
Cer�ro Journal
”Vita sine proposito

vaga est.” – Lucius
Annaeus Seneca

ISSUE NR. 1 CERBERO LABS JUNE 20, 2022

Welcome to the first issue of Cerbero Journal!

We do understand that our customers cannot follow every blog and social media post we publish, so we decided to create a
journal to offer a general overview of our latest endeavors as a company.

Plus a journal offers the added nostalgia bonus if, like us, you are old enough to remember the golden era of e-zines like ’NT
Insider’.

Among many other things, in this issue we discuss the introduction of Cerbero Store, which we consider to be a game-changer,
and we write about a selection of some of the packages we recently released on it.

FULL METAL ENGINE

Since March of this year Cerbero Engine
comes in two different editions: Classic
and Metal. The Metal edition is designed
to be run in cloud and server environments
which usually lack a graphical stack.

Plugins which import graphical functions
are compatible with the Metal edition: all UI functions are
available, although they are provided only as stubs. A few
graphical methods like msgBox fall back to console I/O.

Providing two editions of Cerbero Engine allows us to offer the
perfect fit for organizations which need a powerful and flexible
back-end for their online services.

If you’re not yet familiar with Cerbero Engine, you can read
the engine intermezzo or visit our web-page.

MALWAREBAZAAR INTELLIGENCE

We recently released the ’MalwareBazaar Intelligence’
package that enables immediate access to intelligence from
MalwareBazaar directly from the file report.

[continued on page 3]

CROSS-PLATFORM
MICROSOFT

AUTHENTICODE
In April we released a package for
commercial licenses of Cerbero Suite
Advanced and Cerbero Engine that
enables verification of Microsoft
Authenticode signatures on platforms
other than Windows such as Linux and
macOS.

Our Authenticode support includes
full-chain certificate and time-stamp
verification.

[continued on page 4]

UPX UNPACKER
We recently released the ’UPX
Unpacker’ package available for all of
our products.

By installing the package, binaries
compressed with UPX are automatically
identified and unpacked as child objects.

[continued on page 5]

HAVING FUN DOING CTFS
While our ’String Decrypter’ package
isn’t just for CTFs, it can be very useful
in that context.

How often do we find ourselves in the
situation of having to brute-force the
decryption of either a string or a byte-
array?

[continued on page 10]

CORE SDK
DOCUMENTATION

For the past year we’ve been expanding
our SDK documentation and we have
now completely documented our core
modules.

[continued on page 3]

cerbero.io CERBERO LABS 1

https://cerbero.io/ee/
https://bazaar.abuse.ch
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 2

CERBERO STORE

One of the major features introduced for this series of Cerbero
Suite and Cerbero Engine is Cerbero Store: a simple way to
install and update packages.

Chief among the reasons we had to create Cerbero Store was
the necessity to release faster updates. It didn’t make sense to
update the whole application just to update a specific part.

Additionally, our software runs on multiple platforms. Which
means that each update requires us to create multiple software
packages. This problem is solved by Cerbero Store, since all
platforms share the same package code.

Another advantage of Cerbero Store is that some components
which are used by a minority of users can now be decoupled
from the main application. In fact, we moved our Windows
memory analysis functionality to a package on Cerbero Store.
That made all of our main software packages sensibly lighter.

INDEX

CERBERO STORE 2
MALWAREBAZAAR INTELLIGENCE 3
CORE SDK DOCUMENTATION 3
CROSS-PLATFORM AUTHENTICODE 4
BLITZ MALWARE ANALYSIS 4
UPX UNPACKER 5
PARALLEL DECOMPILING 5
EXCEL MALWARE STEP BY STEP 6
ENGINE INTERMEZZO 7
CERTIFICATES SUPPORT 8
UNCOMMON FORMATS 8
INTERNAL PROJECT FILES 9
HAVING FUN DOING CTFS 10
CHALLENGE: CTF-LIKE MALWARE 10
API SOLVER 11
TIPS & TRICKS 12

Yet another component we have moved to a package on
Cerbero Store is our native UI for Ghidra. The reason for this
is that Ghidra sometimes changes its API between releases and
breaks our plugin code. Thus, it happened in the past that we
had to update our whole application just to update the plugin
for Ghidra. This issue has now been solved by having the
plugin for Ghidra as a separate package.

In the last months we have started filling Cerbero Store
with packages for all kind of purposes. Among others
we have released the ’MalwareBazaar Intelligence’ package,
the Microsoft Authenticode’ package, the ’String Decrypter’
package, the ’UPX Unpacker’ package, the ’DotNET
BinaryFormatter Decoder’ package and the ’API Solver’
package.

COMMERCIAL-ONLY PACKAGES

Personal license holders of Cerbero Suite have access to many packages on Cerbero Store. However, we reserve some
packages such as the ’MalwareBazaar Intelligence’ package to commercial licenses. We try to limit the number of
packages reserved to commercial licenses to those which we think fulfill a commercial activity. Additionally, some
packages may be available to Cerbero Suite Advanced and not to Cerbero Suite Standard, in case they rely on features
not available to the latter.

cerbero.io CERBERO LABS 2

https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 3

MALWAREBAZAAR INTELLIGENCE
. . . continued from page 1.

The MalwareBazaar intelligence report for a malicious sample analyzed in Cerbero Suite.

The ’MalwareBazaar Intelligence’ package enables immediate
access to intelligence from MalwareBazaar directly from the
file report. The package graphically visualizes all the various
sections of the MalwareBazaar report, including all external
scan providers.

The interface uses different colors to highlight the
maliciousness of a file and all the other highlighted items are
hyper-links which bring you to the relevant MalwareBazaar

web-page.

Although the package is already incredibly useful as it is,
we’re not nearly finished with it!

There are many features we wanted to squeeze in, but we’re
unable to ahead of the release of Cerbero Suite 5.6.

In fact, the most interesting features have yet to come. So
expect an update soon!

CORE SDK DOCUMENTATION
. . . continued from page 1.

Slowly but surely, in the last year we’ve been expanding
our SDK documentation one module at a time and while we
have just started documenting our built-in file format modules,
we’ve already documented all of our core modules.

Namely, our core modules are:

• Pro.Core – Core API for parsing and scanning files
• Pro.UI – User-interface API for views, dialogs and

workspaces
• Pro.Carbon – API for disassembling and decompiling

native binaries
• Pro.MP – Multi-Processing API
• Pro.SiliconSpreadsheet – Spreadsheet macro emulation

API
• Pro.Package – API for handling packages

The documentation contains
not only detailed explanations
and code examples, but
also descriptions of every
class, function and constant
present in each module.

With the already documented
core modules, it is already

possible to create every type of extension for Cerbero Suite
and Cerbero Engine, including scan providers and disassembly
loaders for custom file formats, scan hooks, actions, logic and
key providers, graphical tools and much more.

Visit our SDK documentation web-page for more information.

cerbero.io CERBERO LABS 3

https://bazaar.abuse.ch
https://sdk.cerbero.io/latest/Pro.Core.html
https://sdk.cerbero.io/latest/Pro.UI.html
https://sdk.cerbero.io/latest/Pro.Carbon.html
https://sdk.cerbero.io/latest/Pro.MP.html
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html
https://sdk.cerbero.io/latest/Pro.Package.html
https://sdk.cerbero.io/latest/
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 4

CROSS-PLATFORM MICROSOFT AUTHENTICODE
. . . continued from page 1.

Verification of a DLL signed with Microsoft Authenticode on Linux.

In conjunction with our recently extended support for
certificate file formats, we now provide complete support
for inspecting signed Portable Executable binaries on non-
Windows systems.

The only required step to verify Authenticode signatures on
systems such as Linux or macOS is to install our ’Microsoft
Authenticode’ package from Cerbero Store.

Cerbero Suite has been using its own implementation of
Microsoft Authenticode for performance reasons since the
very beginning, back in 2012. However, thanks to the recently

introduced Cerbero Store we can now offer this feature on
systems other than Windows.

We have also exposed Authenticode validation to our Python
SDK.

from Pro.PE import *

print(PE_VerifyAuthenticode(obj))

Alternatively, scan hooking extensions can check the
generated report for the validation scan entries.

BLITZ MALWARE ANALYSIS

Do you get easily bored and distracted by trying to follow long
malware analysis videos? Then perhaps we have a solution for
you!

In a not-to-be-taken-too-seriously effort to showcase the
manual analysis capabilities of Cerbero Suite, we have created
a series of videos where we analyze malware samples in 3
minutes or less.

In our quest to reach virtuoso level, we analyzed an encrypted
and obfuscated Excel malware sample in 19 seconds. You can
watch the video on YouTube!

cerbero.io CERBERO LABS 4

https://blog.cerbero.io/?p=530
https://youtu.be/eIK3KAcVtXw
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 5

UPX UNPACKER
. . . continued from page 1.

But what is UPX?

From the UPX web-site: ”UPX is a free, portable, extendable,
high-performance executable packer for several executable
formats.”

PE, ELF and Mach-O binaries are all supported.

If for some reason a binary is not automatically unpacked, the
unpacker can be invoked manually as an action.

Additionally, the unpacker can be invoked from Python.

from Pkg.UPXUnpacker.Unpack import unpack

ret, output = unpack(file_name)
print the unpacker output
print(output)

The ’UPX Unpacker’ package is open-source to help our
users write similar plugins. An important functionality we
introduced to support this kind of extension is the support for
internal files.

PARALLEL DECOMPILING

Since version 5.2 of Cerbero Suite we used our multi-
processing technology to parallelize the Sleigh decompiler by
running it in a different process. This guarantees complete
stability in case Sleigh encounters an issue and it makes every
decompiling operation safe to cancel.

By parallelizing the decompiler we were also able to initialize
it ahead of time, during the loading of the disassembly.
Therefore, when the decompiler is invoked for the first time
there is no initial delay, making it extra-snappy.

If you haven’t done so already, give it a try: we’re sure you’ll
love it!

DECOMPILER PLATFORMS

The decompiler supports the same platforms as our Carbon disassembler: x86, x64, ARM32 and ARM64.

If you’re wondering what Carbon is: it’s an ultra-fast disassembler. Carbon has been specifically designed for malware
triage and for handling vast amount of data such as memory images and crash dumps.

cerbero.io CERBERO LABS 5

https://upx.github.io
https://sdk.cerbero.io/latest/Pro.MP.html
https://sdk.cerbero.io/latest/Pro.MP.html
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 6

EXCEL MALWARE STEP BY STEP
Sample SHA-256: B17FA8AD0F315C1C6E28BAFC5A97969728402510E2D7DC31A7960BD48DE3FCB6

What follows is a step-by-step analysis of a malicious obfuscated Microsoft Office XLSB document. We deobfuscate the
macros and use our proprietary Silicon Excel Emulator to understand the behavior of the code.

1. By previewing the spreadsheet in Cerbero Suite, we can see
that the macros are obfuscated.

An obfuscated formula looks as follows:

=ATAN(83483899833434.0)=ATAN
↪→ (9.34889399761e+16)=ATAN
↪→ (234889343300.0)=FORMULA.ARRAY(’
↪→ erj74ˆ#MNDKJ3OODL _ WEKJKJERKE ’!
↪→ AT24&’erj74ˆ#MNDKJ3OODL _
↪→ WEKJKJERKE ’!AT27&’erj74ˆ#
↪→ MNDKJ3OODL _ WEKJKJERKE ’!AT29&’
↪→ erj74ˆ#MNDKJ3OODL

etc.

The malware uses the ’ATAN’ macro and a very long sheet
name for obfuscation.

2. We open a new Python editor and execute the action ’Insert
Python snippet’ (Ctrl+R).

3. We insert the Silicon/Spreadsheet snippet to replace
formulas.

4. We uncomment both example regular expressions, as they
were written based on this sample. One regex removes the
’ATAN’ macro and the other removes the sheet name from
cell names. Since there’s only one spreadsheet, no extra logic
is needed.

We then execute the script (Ctrl+E).

5. The script modifies 12 formulas. At this point we can easily
identify ’CALL’ and ’EXEC’ macros and use the Silicon Excel
Emulator to emulate them (Ctrl+E).

Just by emulating these macros, we can see that the malware
creates a directory, downloads a file into it and executes it.

Done.

cerbero.io CERBERO LABS 6

https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 7

ENGINE INTERMEZZO

In case you’re not yet familiar with Cerbero Engine, here is a
quick introduction. You can read more on our web-page.

WHAT IS CERBERO ENGINE?

Cerbero Engine is our solution for enterprise projects such as
cloud or in-house services. It offers the same SDK as Cerbero
Suite Advanced and has already been used to analyze billions
of files.

WHAT CAN IT DO?

Our SDK is extensive. It features support for dozens of
file formats, scanning, disassembly, decompiling, emulation,
signature matching, file carving, decompression, decryption
and much more.

We make sure Cerbero Engine keeps up with the latest threats
and challenges presented by file formats which are difficult to
analyze. We offer state-of-the-art support for various file types
such as Adobe PDF and Microsoft Office.

HOW SECURE IS IT?

Cerbero Engine has been designed taking into account any
type of security issue when analyzing malicious files: buffer
overflows, integer overflows, infinite loops, infinite recursion,
decompression bombs, denial-of-service etc.

WHAT PLATFORMS DOES IT SUPPORT?

Just like Cerbero Suite, Cerbero Engine is cross-platform.
Currently we offer it for both Windows (x86, x64) and Linux
(x64). It is also compatible with older version of Windows and
Linux.

CAN IT BE EMBEDDED?

Cerbero Engine is deployed as an embeddable module: a
Dynamic-Link Library (DLL) on Windows and a Shared
Library on Linux. The engine can be loaded from both C/C++
and Python 3.

Loading the engine from Python is extremely simple.

from ProEngine import *

initialize the engine
proEngineInit()

from here on the SDK can be accessed
from Pro.Core import *
...

finalize the engine before exiting
proEngineFinal()

Loading the engine from C/C++ is also very simple: it only
requires including the ’ProEngine’ header and specifying the
location of the engine on disk.

#define PRO_ENGINE_INIT
#include "ProEngine.h"

int main()
{

// initialize the engine
if (!proEngineInit("/path/to/the/

↪→ engine", ProEngine_InitPython))
return -1;

// from here on the SDK can be
↪→ accessed

// finalize the engine before exiting
proEngineFinal();
return 0;

}

IS IT FAST?

While our SDK is in Python, our engine is written in C++ and
is both multi-thread and multi-process. This design decision
guarantees maximum speed, while also giving our customers
the capability to write cross-platform code that is compatible
across all of our products.

Since the SDK is in Python, our customers don’t need to worry
about rebuilding their project when the engine is updated.
Moreover, we take great care not to introduce breaking
changes to the SDK: we don’t want our customers to worry
that an update could cause their code to stop working!

HOW DO YOU LICENSE IT?

We license Cerbero Engine on a per-case basis. The licensing
depends upon the scope of the project. If you are interested in
a quotation, please contact us.

Purchasing a license of Cerbero Engine comes with discounted
lab licenses of Cerbero Suite. By using Cerbero Suite, your
engineers can interactively debug parsing issues, analyze edge
cases, use our Python editor for development and create
graphical applications that work in conjunction with the
engine.

cerbero.io CERBERO LABS 7

https://cerbero.io/ee/
mailto:sales@cerbero.io
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 8

CERTIFICATES SUPPORT

The ASN.1 tree.

Since version 5.5 of Cerbero Suite and version 2.5 of Cerbero
Engine we fully support certificate formats. While Cerbero
Suite would already let you inspect certificates inside binaries,
now it can load them directly from disk and also lets you
inspect each individual ASN.1 object.

Both DER and PEM encodings for certificates are supported
and you can inspect all types of certificates, including X509,
PKCS7 and PKCS12.

We have also exposed the code to our Python SDK in order to
make the programmatic parsing of certificates a simple task.

For example, the following code enumerates all the objects in
an ASN.1 DER file.

from Pro.Core import *
from Pro.Certificates import *

def enumerateObjects(fname):

c = createContainerFromFile(fname)
if c.isNull():

return
obj = DERObject()
if not obj.Load(c):

return
class Visitor(DERObjectVisitor):

def Visit(self, obj, oi):
print(obj.

↪→ GetObjectDescription(oi
↪→))

print(" offset:", hex(oi.
↪→ offset), "size:", hex(
↪→ oi.content_size))

return 0
v = Visitor()
obj.VisitObjects(v)

You can check out the SDK documentation for the
Pro.Certificates module for more code examples.

UNCOMMON FORMATS

While the support for common file formats such as certificates
is available to personal licenses, the support for some
uncommon file and data formats is sometimes restricted to
commercial licenses.

Check out this video on YouTube where we demonstrate the
use of a package available to commercial licenses to decode
the BinaryFormatter encoded payload in a malicious Microsoft
HTML Application.

cerbero.io CERBERO LABS 8

https://sdk.cerbero.io/latest/Pro.Certificates.html
https://youtu.be/QsfinWyegNM
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 9

INTERNAL PROJECT FILES

With version 5.6 of Cerbero Suite we introduced a new major
core feature, namely the capability to generate files which do
not exist on disk and store them in the analysis report.

While this feature doesn’t seem so important, it has countless
real-world applications. For instance, an unpacker may unpack
a file during the scanning process and store the resulting file
as an internal file. When the unpacked file is requested,
the operation bypasses the unpacker and directly accesses the
internal file.

In the following example a dummy internal file is generated
for a scanned file and is added as an embedded object to the
generated report.

from Pro.Core import *

def scanning(sp, ud):
skip if it’s a nested scan: avoid

↪→ recursion
if sp.isNestedScan():

return
a global report is needed to store

↪→ internal files
r = sp.getGlobalReport()
if not r:

return
generate an internal file id
uid = r.newInternalFileUID()
if not uid:

return
retrieve the path on disk for the

↪→ internal file
path = r.newInternalFilePath(uid)
generate the content of the

↪→ internal file
with open(path, "w") as f:

f.write("hello " * 5)
save the internal file
r.saveInternalFile(uid, "TEST FILE")
add the internal file as embedded

↪→ object
sp.addInternalFile(uid, "", "Test")

The lines in the ’hooks.cfg’ configuration file:

[IntFileTest_1]
label = Internal file test
file = intfile_hook.py
scanning = scanning
enable = yes

The internal file created by our code.

cerbero.io CERBERO LABS 9

https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 10

HAVING FUN DOING CTFS
. . . continued from page 1.

Example of a decrypted string.

Do you need to brute-force the decryption of a string in a
CTF challenge? Our ’String Decrypter’ package comes to the
rescue!

The string decryption tool can be invoked as an action from
a hex view or a Carbon disassembly view and can be used to
brute-force the decryption of strings and byte-arrays.

The tool supports various algorithms and string encodings
combined with endianness. Moreover, it can filter decoded
strings with the following options:

• Don’t filter (includes raw byte-arrays)
• Include only decoded strings

• Include only strings with ASCII characters
• Include only string matching a regular expression

provided by the user

Parallel execution is also supported, as it will make a
difference if more algorithms are added to the list. Also,
for every decryption method the number of combinations is
displayed.

For every decrypted entry, String Decrypter shows the
performed operation along with the string encoding.

While the ’String Decrypter’ package is useful during CTFs,
it is equally so when reversing malware!

CHALLENGE: CTF-LIKE MALWARE

Not all malware is tedious. In fact, some of it resembles CTF
challenges! From a Twitter post by InQuest, we discovered an
interesting malware.

A few of the things encountered in this sample: encrypted MS Office
document, VBA, Windows Link file (LNK), OLE objects, Windows
help files (CHM), PNG steganography and PowerShell.

The analysis should take about 15-20 minutes in Cerbero Suite if you
feel like testing your skills!

Sample SHA-256: 46AFA83E0B43FDB9062DD3E5FB7805997C432DD96F09DDF81F2162781DAAF834

If you get stuck in the analysis, visit our blog for some helpful screenshots (spoiler alert).

cerbero.io CERBERO LABS 10

https://twitter.com/InQuest/status/1285295975347650562
https://blog.cerbero.io/?p=2224
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 11

API SOLVER

Our ’API Solver’ package is available on Cerbero Store for all
commercial licenses of Cerbero Suite Advanced.

The purpose of this package is to convert CRC-like hashes
contained in places such as shellcode back to their API names.
The package features dozens of built-in hashing methods
commonly found in malware.

Once installed from Cerbero Store, the API Solver user-
interface will be available as an action. If the action is
executed in the context of a Carbon disassembly, additional
functions are available: API Solver can detect API hashes in
code instructions and comment solved hashes in the Carbon
disassembly.

You can choose which group of modules to use to solve API
names. In each module group you can select one or more
modules to populate the API solver database. If the hash
method is set to ’all’, API Solver tries to figure out the hashing
method.

You can solve individual values and select a custom hashing
method, as well as a built-in hashing method. When choosing
a built-in hashing method, you can inspect its pseudo-code.

The solver can also be used programmatically:

from Pkg.APISolver import APISolver

solver = APISolver("win32", ("kernel32",
↪→ "urlmon"))

for h in (0xEC0E4E8E, 0x702F1A36, 0
↪→ xE8AFE98, 0x73E2D87E):

print(solver.solve(h))

The output of the code:

[’KERNEL32.LoadLibraryA’ (ror13_add_32)]
[’URLMON.URLDownloadToFileA’ (

↪→ ror13_add_32)]
[’KERNEL32.WinExec’ (ror13_add_32)]
[’KERNEL32.ExitProcess’ (ror13_add_32)]

The solver can also be invoked with one or more built-in
methods:

solver = APISolver("win32", ("kernel32",
↪→ "urlmon"), ("ror13_add_32",))

As well as one or more custom methods (built-in names and
custom methods can be mixed together):

def custom_hash(name):
h = 0
for c in name:

h += c
return h

solver = APISolver("win32", ("kernel32",
↪→ "urlmon"), (custom_hash,))

If the ’custom hash’ function has an additional argument, it
will also be passed the name of the module.

You can watch a full introduction to the package on YouTube!

Some solved API hashes contained in a shellcode inside of a PDF document.

cerbero.io CERBERO LABS 11

https://youtu.be/r8QjgQjqYAk
https://cerbero.io

ISSUE NR. 1 CERBERO JOURNAL 12

TIPS & TRICKS

As the ’Pro.PE’ module is not yet documented on our SDK
web-page, we recently had a customer contact us to know
whether it was possible to programmatically modify a .NET
metadata table field.

Parsing .NET metadata tables is not trivial, because in order to
know the offset of a specific table it is necessary to calculate
the size of all the tables which precede that table. The
difficulty in the size calculation is that .NET metadata tables
contain fields whose size is dynamically calculated.

However, parsing .NET metadata tables becomes trivial when
using our SDK. The following function modifies the value of
a field in the ’Assembly’ table.

from Pro.Core import *
from Pro.PE import *

def editDotNETTable(fname):
open the file with write privileges
f = NT_OpenFile(fname,

↪→ NTFileOpt_Write)
if not f:

return
encapsulate the file in a container
c = NTContainer()
c.setData(f, True)
load the container as a PE binary

pe = PEObject()
if not pe.Load(c):

return
retrieve the .NET tables
tables = pe.MDTables("#˜")
retrieve the array of Assembly

↪→ entries
assembly = tables.at(Assembly_t)
if assembly.IsNull():

return
modify a field in the structure
print("Original MajorVersion:",

↪→ assembly.Uns("MajorVersion"))
assembly.Set("MajorVersion", 1)
print("Modified MajorVersion:",

↪→ assembly.Uns("MajorVersion"))

The edited field in the .NET binary.

CERBERO LABS

If you have any questions, feel free to contact us at: info@cerbero.io

You can follow us on Twitter to be notified about the latest updates!

If you’re familiar with command-line scripting in Cerbero
Suite, you might know that by running a script without the
’-c’ argument all output is redirected to the output view in the
main window.

In certain cases, however, it might be desirable to avoid the
creation of a main window.

For this purpose we have introduced the ’-g’ argument.

For example:

cerpro.exe -g -r foo.py

If the script doesn’t create an output view, then the output of
the ’print’ function isn’t visible.

Furthermore, since version 5.5 of Cerbero Suite we have added
terminal support for Windows.

On Windows running scripts with the ’-c’ argument results in
not being able to see the stdout output. The reason for this
is that the ’cerpro’ binary is built as a GUI application and
therefore is not attached to a terminal.

To overcome this limitation we have created a launcher for
Windows called ’cerpro console.exe’.

For example, the following code asks the user to enter a string
and prints it back:

cerpro_console.exe -e "t=input(’Enter a
↪→ string: ’);print(t)"

If you’re interested in learning more about command-line
scripting in Cerbero Suite, you can read our dedicated SDK
documentation page.

cerbero.io CERBERO LABS 12

https://sdk.cerbero.io/latest/
https://sdk.cerbero.io/latest/
https://ntcore.com/files/dotnetformat.htm
mailto:info@cerbero.io
https://twitter.com/cprofiler
https://sdk.cerbero.io/latest/CmdLine.html
https://sdk.cerbero.io/latest/CmdLine.html
https://cerbero.io

