
Cer�ro Journal ”Ars longa, vita

brevis” – Hippocrates

ISSUE NR. 2 CERBERO LABS JANUARY 16, 2023

In this issue of our journal we’ll be discussing the release of Cerbero Suite 6 and Cerbero Engine 3, which we released back in
September, new cloud intelligence packages on Cerbero Store and important improvements to our support for PDF documents.

The new major version of Cerbero Suite came with many internal improvements such as better search dialogs, which now all
support regular expressions and include wrap around search. More importantly, we included some improvements which will be
pivotal to the creation of new features during the 6.x series.

In August we released the ’Sample Downloader’ package, a great little package for all types of licenses to download malware
samples from various intelligence providers which complements the commercial ’AbuseCH Intelligence’ package.

PDF IMPROVEMENTS

Malicious payloads can be hidden inside
JPEG and JPEG2000 streams in PDF
documents. We know what you’re
thinking: ”Isn’t JPEG a lossy format?”.

True, but there’s a way around that. [read more]

Our PDF support has been featuring the capability to decode
JBIG2 streams for many years.

JBIG2 is an imperative file format which has been
demonstrated to be Turing complete. In fact, one of the most
sophisticated exploits has been created exploiting a JBIG2

library in iOS. The exploit mentioned in the article creates over
70,000 segments to create a small virtual machine in logical
operations defined by JBIG2.

In a recent release we made our already hardened JBIG2
decoding support even more secure by relegating it to a
different process and constraining it to a time threshold.

The 6.1 release of Cerbero Suite and the 3.1 release of Cerbero
Engine featured a completely rewritten JBIG2 library. Not
only is it faster than the older library, but has also constraints
on allocation and processing time by default. Therefore, the
library now runs in the same process again, while also being
more secure and faster.

MALWAREBAZAAR

We have renamed our ’MalwareBazaar
Intelligence’ commercial package and
greatly extended its functionality. In
the first version of the package, it
was possible to inspect MalwareBazaar
intelligence about a specific sample
from the report view in the analysis
workspace.

Now it is possible to search malware
samples in the MalwareBazaar database
directly from the UI of Cerbero Suite.

Searches can be performed using all
supported parameters and also include
recently uploaded samples. [read more]

SAMPLE DOWNLOADER

A simple extension that can download
malware samples by their hash. The
package supports various intelligence
services from which to retrieve malware
samples and is available to all licenses of
Cerbero Suite Advanced. [read more]

SDK DOCUMENTATION
We keep on documenting our SDK.
Recently we have documented the CFBF
module which contains the API for
parsing legagy Office documents (e.g.,
DOC, XLS, PTT). [read more]

CERBERO SUITE VS CTFS
We test our products on the field. How
seriously? Very. [read more]

cerbero.io CERBERO LABS 1

https://blog.cerbero.io/?p=1676
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://blog.cerbero.io/?p=2442
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 2

CERBERO STORE

One of the major features introduced in the previous series of
Cerbero Suite and Cerbero Engine is Cerbero Store: a simple
way to install and update packages.

Chief among the reasons we had to create Cerbero Store was
the necessity to release faster updates. It is extremely efficient
to update a specific part rather than the whole application
and it prevents users being forced to update when they’re not
interested in a particular functionality.

Additionally, our software runs on multiple platforms. Which
means that each update requires us to create multiple software
packages. This problem is solved by Cerbero Store, since all
platforms share the same package code.

INDEX

CERBERO STORE 2
ABUSECH INTELLIGENCE 3
BLITZ MALWARE ANALYSIS 4
SAMPLE DOWNLOADER 5
PDF MALWARE HIDDEN IN IMAGES 6
CFBF DOCUMENTATION 7
ENGINE INTERMEZZO 8
JAVA & DEX DOCUMENTATION 9
CERBERO SUITE VS CTFLEARN.COM 10
CHALLENGE: PAYLOAD URLS 10
VBA MALWARE STEP BY STEP 11
HISTORY: MACOSX BINARY ENCRYPTION 13
TIPS & TRICKS 15

Over the course of the previous year, we have released
multiple packages on Cerbero Store: ’API Solver’, ’Microsoft
Authenticode’, ’String Decrypter’ and ’UPX Unpacker’. Just
to name a few.

The most recent packages we released are ’Sample
Downloader’, a great little utility available to all types
of licenses of Cerbero Suite Advanced to download
malware samples from various intelligence providers, and the

commercial ’AbuseCH Intelligence’, which offers extensive
integration of MalwareBazaar intelligence in Cerbero Suite.

This year we’ll be releasing even more packages on Cerbero
Store than we did the previous year. Moreover, soon
we’ll release a major commercial package for Cerbero Suite
Advanced and existing commercial license holders will get
early access.

COMMERCIAL-ONLY PACKAGES

Personal license holders of Cerbero Suite have access to many packages on Cerbero Store. However, we reserve some
packages such as the ’AbuseCH Intelligence’ package to commercial licenses. We try to limit the number of packages
reserved to commercial licenses to those which we think fulfill a commercial activity. Additionally, some packages may
be available to Cerbero Suite Advanced and not to Cerbero Suite Standard, in case they rely on features not available to
the latter.

cerbero.io CERBERO LABS 2

https://bazaar.abuse.ch/
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 3

ABUSECH INTELLIGENCE PACKAGE
We have renamed our ’MalwareBazaar Intelligence’ commercial package and greatly extended its functionality.

You can check out the video presentation to quickly learn about its features.

WHAT IS ABUSE.CH AND MALWAREBAZAAR?

abuse.ch is a platform which provides community driven threat
cyber intelligence. It hosts a number of services among which
most prominently stands MalwareBazaar. MalwareBazaar is
an open malware database which includes threat intelligence
and a rich 3rd-party API.

WHY DID WE RENAME THE PACKAGE?

We wanted to leave open the possibility to integrate additional
services hosted on abuse.ch in our plugin in the future.

HOW DID WE IMPROVE THE PACKAGE?

In the first version of the package, it was possible to inspect
MalwareBazaar intelligence about a specific sample from the
report view in the analysis workspace.

Now it is possible to search malware samples in the
MalwareBazaar database directly from the UI of Cerbero
Suite.

Searches can be performed using all supported parameters and
also include recently uploaded samples.

Malware samples can be downloaded and analyzed right away,
without ever leaving the Cerbero Suite user interface.

cerbero.io CERBERO LABS 3

https://youtu.be/2wjHQKoaCFM
https://abuse.ch
https://bazaar.abuse.ch/
https://abuse.ch
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 4

. . . continued from page 3.

When you open a file in the analysis workspace, the complete
MalwareBazaar intelligence can be accessed directly from the
report.

Highlighted entries in the report can be activated to continue
searching for additional malware samples.

The discovered malware samples can be batch-downloaded
and are automatically added to the current project.

You can also perform custom searches on MalwareBazaar
using the relevant action.

And, of course, all analyzed files are saved inside the current
project.

DOES YOUR ORGANIZATION PROVIDE ONLINE INTELLIGENCE?

If you think your organization could be interested in an integration between its online intelligence
services and Cerbero Suite, you can contact us for more information.

We offer various deployment methods for our installable packages: a package integrating the online
services of your organization can be deployed in a flexible way through Cerbero Store or it can be
deployed using the infrastructure of your organization.

BLITZ MALWARE ANALYSIS

Do you get easily bored and distracted by trying to follow long
malware analysis videos? Then perhaps we have a solution for
you!

In a not-to-be-taken-too-seriously effort to showcase the
manual analysis capabilities of Cerbero Suite, we have created
a series of videos where we analyze malware samples in 3
minutes or less.

In this case, we extracted the payload from a malicious
Microsoft Excel malware sample in 37 seconds. You can
watch the video on YouTube!

cerbero.io CERBERO LABS 4

mailto:info@cerbero.io
https://youtu.be/9qEwjngXvPs
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 5

SAMPLE DOWNLOADER PACKAGE
Contrary to the ’AbuseCH Intelligence’ package, the ’Sample Downloader’ package is available to all license of Cerbero Suite
Advanced.

You can check out the video presentation for a quick introduction.

The API keys for the supported intelligence providers can be configured from the settings page.

While this is a simple extension, we consider it extremely
useful, as it allows downloading malware samples by their
hash. The package tries to download the requested samples
from various supported intelligence services.

Installing the ’Sample Downloader’ package from Cerbero
Store takes only a few clicks. Once installed, you can go to the
settings and enter your API keys for the supported intelligence
services.

To download one or multiple malware samples, just enter their
hash.

Sample Downloader will try to download the malware samples
from all supported intelligence services.

Once the samples have been downloaded, you can directly
inspect them in Cerbero Suite. Additional samples can be
downloaded within the analysis workspace using one of the
actions added by the package.

cerbero.io CERBERO LABS 5

https://youtu.be/UiPOm41SBLg
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 6

PDF MALWARE HIDDEN IN IMAGES
In Cerbero Suite 6.1 and Cerbero Engine 3.1 we added support for decoding JPEG (/DCTDecode) and JPEG2000 (/JPXDecode)
images in PDF documents. The reason for this is that it is possible to encode malicious data using these filters. This was
demonstrated by Dénes Olivér Óvári in his 2015 research where a grayscale JPEG was used to encode a JavaScript script.

We want to thank Dénes for his research and for providing us with his proof of concept. We could confirm that indeed the
technique still works using the latest Acrobat Reader.

The proof of concept PDF provided to us by Dénes Olivér Óvári displays a JavaScript alert.

ISN’T THE COMPRESSION IN JPEG IMAGES
LOSSY?

It depends. Using a high quality factor (qf) for the
compression it would be possible to store raw data losslessly.

From Dénes’s article:

”At high qf settings, with floating-point precision DCT
calculation, it would be possible to store and retrieve raw
RGB data losslessly, using software like GIMP, for example.
However, JPEG implementations differ – quantization tables
and certain stages of decompression are entirely up to the
developer, therefore the output might be different when the
stream is decompressed with another library.

In the most popular PDF reader application, Acrobat Reader,
we can see that Adobe’s JPEG implementation could alter
some samples in the LSB +/- 1 range. This is completely
reasonable for image reproduction and conforms to the JPEG
specification, while making the misuse of DCTDecode to store
arbitrary data also impossible at first sight.”

Using the grayscale mode avoids having to deal with color
space conversion:

”If these calculations are computed with finite precision,
rounding errors could occur, causing information loss –
certain RGB values are impossible to represent in the output.
Since at high qf settings, the quantization tables contain only

1s, it could be assumed that actually all of the information loss
was due to this conversion.

This assumption can be verified because JPEG has a separate
greyscale mode. Omitting any colour space conversion, using
only the luminance layer, every 24 bits of incoming data
represent only a single pixel of the image.”

Here is Cerbero Suite correctly decoding the JavaScript in
Dénes’s proof of concept.

DOES MALWARE USE THIS TECHNIQUE?

While we haven’t yet observed this technique used by
malware, we recently came across a malicious PDF which
encodes JavaScript using PNG predictor encoding: SHA-256:
DA16AC8F2DB3053C35239FA4EB2F0F61FBB1F9C8BB9
D32836F8D6AE7D49AF090 - object 49

cerbero.io CERBERO LABS 6

https://www.virusbulletin.com/virusbulletin/2015/03/script-lossy-stream/
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 7

CFBF DOCUMENTATION
We have documented our CFBF module which contains the API for parsing legacy Office documents (e.g. DOC, XLS, PPT).
Here we present two useful code snippets.

VBA EXTRACTION

The following code example shows how to extract VBA code
from a CFBF document.

from Pro.Core import *
from Pro.CFBF import *

def extractVBAVisitor(obj, ud, dir_id,
↪→ children):
name = obj.DirectoryName(dir_id)
if name == "VBA" and obj.

↪→ FlagsIsStorage(children.at(0)):
extract VBA
vbacode = obj.ExtractVBAProject(

↪→ obj.GetDirectoryTree(),
↪→ dir_id)

if vbacode != None:
print(vbacode)

return 0

def extractVBA(fname):
c = createContainerFromFile(fname)
if c.isNull():

return
cfb = CFBObject()
if not cfb.Load(c):

return
dirs = cfb.BuildDirectoryTree()
cfb.SetDirectoryTree(dirs)
cfb.VisitDirectories(dirs,

↪→ extractVBAVisitor, None)

XLS MACRO DECOMPILING

While it’s possible to use the low-level ExcelMacroDecompil
er.decompile() method to decompile macros, it’s preferable to
create a Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspac
e and iterate through its cells.

There are multiple advantages in doing so:

1. Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspac
e is used by all types of Microsoft Excel formats,
including XLSB and XLSM. Therefore, the code can
be easily generalized.

2. Pro.SiliconSpreadsheet offers a more intuitive and
complete API.

3. Pro.SiliconSpreadsheet offers an API to emulate
macros if needed.

4. The contents of a Pro.SiliconSpreadsheet.SiliconSpread
sheetWorkspace instance can be easily manipulated.

The following code examples demonstrates how to convert an
XLS document into a Pro.SiliconSpreadsheet.SiliconSpread
sheetWorkspace instance and then iterates through its cells,
printing out the ones that contain a macro.

from Pro.Core import *
from Pro.CFBF import *

from Pro.SiliconSpreadsheet import *

def extractMacros(fname):
c = createContainerFromFile(fname)
if c.isNull():

return
cfb = CFBObject()
if not cfb.Load(c):

return
dirs = cfb.BuildDirectoryTree()
cfb.SetDirectoryTree(dirs)
for name in ("Workbook", "Book"):

wbs = cfb.DirectoryFromName(dirs,
↪→ 0, name)

if wbs.IsValid():
break

if wbs.IsNull():
return

wbstream = cfb.Stream(wbs)
if wbstream.isNull():

return
parser = CFBXlsParser(wbstream)
book = CFBXlsBook()
if not book.Load(parser):

return
ws = SiliconSpreadsheetWorkspace()
if not parser.

↪→ createSiliconSpreadsheetWorkspace
↪→ (book, ws):
return

iterate through sheets
sheets = ws.getSheets()
it = sheets.iterator()
while it.hasNext():

sheet = it.next()
print(sheet.getName())
iterate through cells
cell_it = sheet.cellIterator()
while cell_it.hasNext():

cell = cell_it.next()
skip cells without a

↪→ formula
if not cell.cell.formula:

continue
cell.index.sheet = "" # don’t

↪→ print the sheet name
↪→ in the cell name

print(" cell:",
↪→ SiliconSpreadsheetUtil.
↪→ cellName(cell.index), "
↪→ formula:", cell.cell.
↪→ formula)

An example output of the code:

BvkFvmzLtsgS
cell: HS1581 formula: CHAR(HS1883

↪→ -949)
cell: HZ1595 formula: RUN(BJ408)
cell: HS1582 formula: RUN(FN624)
cell: CK1884 formula: RUN(EP402)
[...]

cerbero.io CERBERO LABS 7

https://sdk.cerbero.io/latest/Pro.CFBF.html
https://sdk.cerbero.io/latest/Pro.CFBF.html#Pro.CFBF.ExcelMacroDecompiler.decompile
https://sdk.cerbero.io/latest/Pro.CFBF.html#Pro.CFBF.ExcelMacroDecompiler.decompile
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#module-Pro.SiliconSpreadsheet
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#module-Pro.SiliconSpreadsheet
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://sdk.cerbero.io/latest/Pro.SiliconSpreadsheet.html#Pro.SiliconSpreadsheet.SiliconSpreadsheetWorkspace
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 8

ENGINE INTERMEZZO

In case you’re not yet familiar with Cerbero Engine, here is a
quick introduction. You can read more on our web-page.

WHAT IS CERBERO ENGINE?

Cerbero Engine is our solution for enterprise projects such as
cloud or in-house services. It offers the same SDK as Cerbero
Suite Advanced and has already been used to analyze billions
of files.

WHAT CAN IT DO?

Our SDK is extensive and features support for dozens of
file formats, scanning, disassembly, decompiling, emulation,
signature matching, file carving, decompression, decryption
and much more.

We make sure Cerbero Engine keeps up with the latest threats
and challenges presented by file formats which are difficult to
analyze. We offer state-of-the-art support for various file types
such as Adobe PDF and Microsoft Office.

HOW SECURE IS IT?

Cerbero Engine has been designed taking into account any
type of security issue when analyzing malicious files: buffer
overflows, integer overflows, infinite loops, infinite recursion,
decompression bombs, denial-of-service etc.

WHAT PLATFORMS DOES IT SUPPORT?

Just like Cerbero Suite, Cerbero Engine is cross-platform.
Currently we offer it for both Windows (x86, x64) and Linux
(x64). It is also compatible with older version of Windows and
Linux.

CAN IT BE EMBEDDED?

Cerbero Engine is deployed as an embeddable module: a
Dynamic-Link Library (DLL) on Windows and a Shared
Library on Linux. The engine can be loaded from both C/C++
and Python 3.

Loading the engine from Python is extremely simple.

from ProEngine import *

initialize the engine
proEngineInit()

from here on the SDK can be accessed
from Pro.Core import *
...

finalize the engine before exiting
proEngineFinal()

Loading the engine from C/C++ is also very simple: it only
requires including the ’ProEngine’ header and specifying the
location of the engine on disk.

#define PRO_ENGINE_INIT
#include "ProEngine.h"

int main()
{

// initialize the engine
if (!proEngineInit("/path/to/the/

↪→ engine", ProEngine_InitPython))
return -1;

// from here on the SDK can be
↪→ accessed

// finalize the engine before exiting
proEngineFinal();
return 0;

}

IS IT FAST?

While our SDK is in Python, our engine is written in C++
and is both multi-thread and multi-process. This design
decision guarantees maximum speed, while also giving you
the capability to write cross-platform code that is compatible
across both Cerbero Engine and Cerbero Suite.

Since the SDK is in Python, you don’t need to worry about
rebuilding your project when the engine is updated. Moreover,
we take great care not to introduce breaking changes to the
SDK: we don’t want you to worry that an update could cause
your code to stop working!

HOW DO YOU LICENSE IT?

We license Cerbero Engine on a per-case basis. The licensing
depends upon the scope of the project. If you are interested in
a quotation, please contact us.

Purchasing a license of Cerbero Engine comes with discounted
lab licenses of Cerbero Suite. By using Cerbero Suite, your
engineers can interactively debug parsing issues, analyze edge
cases, use our Python editor for development and create
graphical applications that work in conjunction with the
Cerbero Engine.

cerbero.io CERBERO LABS 8

https://cerbero.io/ee/
mailto:sales@cerbero.io
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 9

JAVA CLASS & ANDROID DEX DOCUMENTATION
We have documented our modules to parse Java Class and Android DEX files. We present here a few useful code snippets.

JAVA CLASS DISASSEMBLING

The following code example demonstrates how to disassemble
a Java Class.

from Pro.Core import *
from Pro.Class import *

def disassembleJavaClass(fname):
c = createContainerFromFile(fname)
if c.isNull():

return
obj = ClassObject()
if not obj.Load(c) or not obj.

↪→ ProcessClass():
return

out = NTTextBuffer()
obj.Disassemble(out)
print(out.buffer)

JAVA CLASS METHOD ENUMERATION

The following code example shows how to enumerate the
methods in a Java Class.

from Pro.Core import *
from Pro.Class import *

def enumerateJavaClassMethods(fname):
c = createContainerFromFile(fname)
if c.isNull():

return
obj = ClassObject()
if not obj.Load(c) or not obj.

↪→ ProcessClass():
return

methods = obj.Methods()
it = methods.iterator()
while it.hasNext():

method_offs = it.next()
attrs, fd = obj.FieldAttributes(

↪→ method_offs)
name = obj.IndexToString(fd.

↪→ name_index)
print("offset:", hex(method_offs), "-

↪→ name:", name)
codeattr_offs = obj.FindAttribute(

↪→ attrs, "Code")
cad = CodeAttributeData()
if codeattr_offs != 0 and obj.

↪→ ParseCodeAttribute(
↪→ codeattr_offs, cad):

print(" code offset:", hex(cad.
↪→ code_offset), "- code size:",
↪→ hex(cad.code_length))

An example output of the code:

offset: 0x2f1 - name: <init>
code offset: 0x307 - code size: 0x5

offset: 0x31c - name: main
code offset: 0x332 - code size: 0x44

offset: 0x3c6 - name: <clinit>

code offset: 0x3dc - code size: 0xb

DEX METHOD ENUMERATION

Unlike Java Class files, Android DEX binaries can contain
multiple classes. Therefore, before enumerating their
methods, it is necessary to enumerate their classes.

from Pro.Core import *
from Pro.DEX import *

def enumerateDEXMethods(fname):
c = createContainerFromFile(fname)
if c.isNull():
return

obj = DEXObject()
if not obj.Load(c):
return

classes = obj.Classes()
class_count = classes.Count()
for i in range(class_count):
class_name = obj.ClassIndexToString(i

↪→ , True)
print("class:", class_name)
cd = ClassData()
if obj.GetClassData(i, cd):
for it in (cd.direct_methods.

↪→ iterator(), cd.
↪→ virtual_methods.iterator()):

while it.hasNext():
m = it.next()
method_name = obj.

↪→ MethodIndexToString(m.
↪→ index)

print(" method:", method_name
↪→)

ci = CodeItem()
if obj.GetCodeItem(m.code_off,

↪→ ci, False):
print(" code offset:",

↪→ hex(ci.code_offset), "-
↪→ code size (in words):"
↪→ , hex(ci.insns_size))

An example output of the code:

class: com.android.providers.applications
↪→ .ApplicationLauncher

method: void launchApplication(android.
↪→ net.Uri)

code offset: 0x14f8 - code size (in
↪→ words): 0x4b

[...]

Similarly, disassembling is done on a per-class basis.

for i in range(class_count):
out = NTTextBuffer()
obj.Disassemble(out, i)
print(out.buffer)

cerbero.io CERBERO LABS 9

https://sdk.cerbero.io/latest/Pro.Class.html
https://sdk.cerbero.io/latest/Pro.DEX.html
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 10

CERBERO SUITE VS CTFLEARN.COM
By Erik Pistelli

While I had used Cerbero Suite for CTF challenges in the past,
back in October 2019 I wanted to really test it against them.
Since I am usually quite busy, I can’t take part in CTF events
when they take place. I needed CTF challenges that I could
solve at my own pace, without timing constraints.

Hence, I found this web-site with CTF challenges called
CTFlearn. Back then the web-site had little over 30000
registered users and had already lots of challenges targeting
various disciplines: hacking, forensics, reverse engineering,
programming, scavenger hunts, etc.

Cerbero Suite worked really well against the challenges for
which it could be applied (mainly reverse engineering and
forensics) and after 2 months I had solved all the challenges
on the web-site and was first on the scoreboard.

”Ntoskrnl” is my alias.

What I hadn’t anticipated is that the competition stoked my
ego and brought out the teenager in me. I became a little too
addicted.

The problem got even worse when CTFlearn started
publishing events, meaning regular time-constrained CTF

competitions. I took part in only one of them and won a t-shirt
after losing hours of sleep.

One day I stopped cold-turkey, because I knew that I couldn’t
help myself and I haven’t logged into the page since then.
However, I definitely recommend CTFlearn to all those who
want to improve their CTF skills. Just don’t expect not to get
addicted.

Disclaimer: the sunglasses weren’t part of the prize.

CHALLENGE: PAYLOAD URLS
Download the following malware sample and understand which URLs it tries to download by performing a static analysis.

SHA-2/256: 9E32AC74B80976CA8F5386012BAE9676DECB23713443E81CB10F4456BF0E7E0B

Hints:

1. VGhlIGZpbGUgJy9kb2MuaHRtJyBjb250YWlucyBQb3dlclNoZWxsIGNvZGUu
2. VGhlIHByZWZpeCBvZiBldmVyeSBwYXlsb2FkIFVSTCBpcyAnaHR0cDovLzB4YzBhODdhMDE6NDI2NjYvQzg0

QkVFMzQyODREQTZCQkREMTY4NTlCQjlCOTYxRDhBM0IzMkQ0OUQ2Mjc2Njc2RjQ2Nzk4RUE1MTAwMz
RFNC8nLg==

3. VGhlIHBheWxvYWQgbmFtZXMgYXJlOiAnZW5jcnlwdGVyLmV4ZScsICdjb250cm9sLmV4ZScsICdyYW5zb21ub
3RlX2ZsYWcuZXhlJyBhbmQgJ2dvZGUuZXhlJy4=

cerbero.io CERBERO LABS 10

https://ctflearn.com
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 11

VBA MALWARE STEP BY STEP
Sample SHA-256: 764A598A97085020764F46314A36B113080E4191C62F8E3DC9CD769520D807C1

What follows is a step-by-step analysis of a malicious EML file containing a legacy Microsoft Office document. We deobfuscate
the VBA code and extract the payloads.

We were made aware of this sample thanks to a Twitter post by @StopMalvertisin.

1. The EML document contains an embedded file named
’file:///C:/1B737536/0ejtczfv files/editdata.mso’. The file
contains compressed ZLib data starting at offset 0x32. We
select the compressed data and filter it (Ctrl+T).

We apply the ’unpack/zlib’ filter and then elevate to a root file
the decompressed data.

2. At this point we find ourselves with obfuscated strings
and numbers in the VBA code. We manually deobfuscate
individual elements by selecting the obfuscated portion of
code and executing a custom script (Ctrl+Alt+R).

The following is the script we used to deobfuscate strings and
numbers.

from Pro.UI import *

v = proContext().getCurrentView()
if v.isValid():

t = v.getSelectedText()
t = t.replace("&O", "0o").replace("&H

↪→ ", "0x").replace("&", "+").
↪→ replace("Chr", "chr").replace("
↪→ _", "").replace("\r", "").
↪→ replace("\n", "")

t = eval(t)
t = ’"’ + t + ’"’ if type(t) is str

↪→ else str(t)
v.setSelectedText(t)

We also renamed a few variables to better understand the code.
What follows is a redacted snippet of deobfuscated code which
extracts payloads from the file (you can check out the entire
code on our blog).

Private Sub tBpocVs2()
ThisDocHandle = FreeFile
Open ThisDocFullName For Binary Access

↪→ Read As ThisDocHandle
PayloadOffset = LOF(ThisDocHandle) + 1
For i = 0 To 2
Seek ThisDocHandle, PayloadOffset - 4
Get ThisDocHandle, , PayloadSize
If PayloadSize = 0 Then
Exit For

End If
PayloadOffset = PayloadOffset - 4 -

↪→ PayloadSize
If xLG88djM <> i Then
ExtractPayload ThisDocHandle,

↪→ PayloadOffset, PayloadSize, i
End If

Next i
Close ThisDocHandle

End Sub
Private Sub X69t06QErpf5B48()

’ this function adds the "MZ" magic
↪→ word to extracted payloads

End Sub
Private Sub ExtractPayload(DocHandle As

↪→ Long, PayloadOffset As Long,
↪→ PayloadSize As Long, i As Long)

v4M6r1b9176Z = 0
PayloadSize2 = PayloadSize
If i = 0 Then
Ol2m0Z0z0bZ50 = O4RXMI894xLi3

Else
Ol2m0Z0z0bZ50 = ZeWGJJIl584DJq9 &

↪→ u67DuwoKmP9
End If
Randomize
Seek DocHandle, PayloadOffset
If i <> 0 Then
Get DocHandle, , UR3l02b322sx40
Get DocHandle, , v4M6r1b9176Z
PayloadSize2 = PayloadSize - 6 +

↪→ v4M6r1b9176Z
PayloadOffset = PayloadOffset + 6
Seek DocHandle, PayloadOffset

cerbero.io CERBERO LABS 11

https://twitter.com/StopMalvertisin/status/1553331399708790784
https://twitter.com/StopMalvertisin
https://blog.cerbero.io/?p=2494
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 12

. . . continued from page 11.

End If
ReDim PayloadBuffer(PayloadSize2 - 1)
Get DocHandle, , PayloadBuffer()
If v4M6r1b9176Z <> 0 Then

For ftjx76VlCF6r = 0 To (PayloadSize
↪→ - 6 - UR3l02b322sx40 - 1)

PayloadBuffer(PayloadSize2 -
↪→ ftjx76VlCF6r - 1) =
↪→ PayloadBuffer(PayloadSize - 6
↪→ - ftjx76VlCF6r - 1)

Next ftjx76VlCF6r
End If
Dim hEndSjz1Rj81b As Long
hEndSjz1Rj81b = FreeFile
If v4M6r1b9176Z <> 0 Then

For ftjx76VlCF6r = 0 To v4M6r1b9176Z
↪→ - 1

PayloadBuffer(UR3l02b322sx40 +
↪→ ftjx76VlCF6r) = 255 * Rnd

Next ftjx76VlCF6r
Else

Kill Ol2m0Z0z0bZ50
End If
Open Ol2m0Z0z0bZ50 For Binary Access

↪→ Write As hEndSjz1Rj81b
Put hEndSjz1Rj81b, , PayloadBuffer()
Close hEndSjz1Rj81b
If v4M6r1b9176Z = 0 Then

Qc3U9RX6samAwId Ol2m0Z0z0bZ50
End If

End Sub

3. We wrote a Python script that mimics the VBA payload
extraction.

from Pro.Core import *

def extract():
ctx = proCoreContext()
sp = ctx.currentScanProvider()
if not sp:

return
report = sp.getGlobalReport()
if not report:

return
obj = sp.getObject()
offset = obj.GetSize()
r = CFFBuffer(obj, offset)
for i in range(3):

r.setOffset(offset - 4)
payload_size = r.u32()
offset = r.getOffset() - 4 -

↪→ payload_size

payload_offset = offset
r.setOffset(payload_offset)
payload_size_2 = payload_size
if i != 0:
n1 = r.u32()
n2 = r.u32()
payload_size_2 = payload_size - 6 +

↪→ n2
payload_offset += 6
r.setOffset(payload_offset)

else:
n1 = n2 = 0

buf = obj.Read(payload_offset,
↪→ payload_size)

if n2 != 0:
buf += bytearray(payload_size_2 -

↪→ payload_size)
for j in range(payload_size - 6 -

↪→ n1):
buf[payload_size_2 - j - 1] =

↪→ buf[payload_size - 6 - j -
↪→ 1]

buf[0] = 0x4D
buf[1] = 0x5A

add internal file
uid = report.newInternalFileUID()
if not uid:
return

path = report.newInternalFilePath(uid
↪→)

if not path:
return

with open(path, "wb") as f:
f.write(buf)

fname = "payload_" + str(i + 1)
if report.saveInternalFile(uid, fname

↪→ , fname):
add root entry
ctx.addObjectToReport(fname,

↪→ REPORT_INT_ROOT_PREFIX + uid)

extract()

The script adds all extracted payloads as root files of the
current project.

Important: the script must be executed while the EML file is
the currently opened file in the analysis view.

4. The extracted payloads are a Word document, an x86 binary
and an x64 binary. We can right away analyze the code of the
executable payloads.

Done.

cerbero.io CERBERO LABS 12

https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 13

HISTORY LESSON: MACOSX BINARY ENCRYPTION

Cerbero Suite was the first security solution to support OS X
binary decryption back in 2013 as a result of our own research.
What follows is a summary of the original disclosure published
on our blog. We think this topic makes for an interesting
history lesson while being still relevant today.

OS X uses an internal mechanism to load encrypted Apple
executables and in our research we exploited the same
mechanism to defeat anti-malware solutions.

The operating system implements two encryption systems
for its executables (Mach-O). The first one is implemented
through the LC ENCRYPTION INFO loader command.
Here’s the code which handles this command:

case LC_ENCRYPTION_INFO:
if (pass != 3)

break;
ret = set_code_unprotect(

(struct encryption_info_command
↪→ *) lcp,

addr, map, slide, vp);
if (ret != LOAD_SUCCESS) {

printf("proc %d:
↪→ set_code_unprotect() error
↪→ %d "

"for file \"%s\"\n",
p->p_pid, ret, vp->v_name)

↪→ ;
/* Don’t let the app run if it’s
* encrypted but we failed to set

↪→ up the
* decrypter */
psignal(p, SIGKILL);

}
break;

This code calls the set code unprotect function which sets up
the decryption through text crypter create:

/* set up decrypter first */
kr=text_crypter_create(&crypt_info,

↪→ cryptname, (void*)vpath);

The text crypter create function is actually a function pointer
registered through the text crypter create hook set kernel
API. While this system can allow for external components
to register themselves and handle decryption requests, we
couldn’t see it in use on current versions of OS X.

The second encryption mechanism which is actually being
used internally by Apple doesn’t require a loader command.
Instead, it signals encrypted segments through a flag.

The ’PROTECTED’ flag is checked while loading a segment
in the load segment function:

if (scp->flags & SG_PROTECTED_VERSION_1)
↪→ {
ret = unprotect_segment(scp->fileoff,

scp->filesize,
vp,
pager_offset,
map,
map_addr,
map_size);

} else {
ret = LOAD_SUCCESS;

}

The unprotect segment function sets up the range to be
decrypted, the decryption function and method. It then calls
vm map apple protected.

/* ... transform the rest of the mapping.
↪→ */

struct pager_crypt_info crypt_info;
crypt_info.page_decrypt =

↪→ dsmos_page_transform;
crypt_info.crypt_ops = NULL;
crypt_info.crypt_end = NULL;
#pragma unused(vp, macho_offset)
crypt_info.crypt_ops = (void *)0x2e69cf40

↪→ ;
kr = vm_map_apple_protected(map,

map_addr,
map_addr + map_size,
&crypt_info);

The decryption function is dsmos page transform.

Just like text crypter create even dsmos page transform
is a function pointer which is set through the
dsmos page transform hook kernel API. This API is called
by the kernel extension ’Dont Steal Mac OS X.kext’, allowing
for the decryption logic to be contained outside of the kernel
in a private kernel extension by Apple.

Apple uses this technology to encrypt some of its own core
components like ’Finder.app’ and ’Dock.app’. On current
OS X systems this mechanism doesn’t provide much of
a protection against reverse engineering in the sense that

cerbero.io CERBERO LABS 13

https://blog.cerbero.io/?p=1311
https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 14

attaching a debugger and dumping the memory is sufficient
to retrieve the decrypted executable.

However, this mechanism can be abused by encrypting
malware which will no longer be detected by the static analysis
technologies of current security solutions.

To demonstrate this claim we took a known OS X malware:

The detection rate stood at about 20-25, depending on the
malware.

After having encrypted the malware:

After the encryption is applied, the malware is no longer
detected by scanners at VirusTotal. The problem is that OS
X has no problem in loading and executing the encrypted
malware.

The difference compared to a packer is that the decryption
code is not present in the executable itself and so the static
analysis engine can’t recognize a stub or base itself on other
data present in the executable, since all segments can be
encrypted. Thus, the scan engine also isn’t able to execute the
encrypted code in its own virtual machine for a more dynamic
analysis.

Two other important things about the encryption system is
that the private key is the same and is shared across different
versions of OS X. And it’s not a chained encryption either:
but per-page. Which means that changing data in the first
encrypted page doesn’t affect the second encrypted page and
so on. The encryption algorithm used is Blowfish.

Cerbero Suite is able to decrypt protected executables. To save
an unprotected copy of the Mach-O just perform a ’Select all’
(Ctrl+A) in the main hex view and then click on ’Copy into
new file’ like in the screen-shot below.

Saving the decrypted binary from Cerbero Suite.

NATIVE GHIDRA UI UPDATE
We built our Native Ghidra UI plugin for the latest version of Ghidra (10.2.2). The
updated package is available on Cerbero Store!

If you haven’t yet tried our native UI for Ghidra, you might give it a try: it can even
be run on a different machine than the one with the instance of Ghidra!

cerbero.io CERBERO LABS 14

https://cerbero.io

ISSUE NR. 2 CERBERO JOURNAL 15

TIPS & TRICKS

CREATING A UI THEME

Gordon Miller sent us a theme called ”SolarizedDark”.

We think the theme looks really nice and we uploaded it to
Cerbero Store!

If you’re interested in creating a theme for Cerbero Suite, you
can check out our introduction.

If you don’t want to create an entirely new theme, you can
inherit from an existing one:

<theme inherits="Monokai">
<entry name="stylesheet">

QTabBar::tab {
padding: 16px;

}
</entry>

</theme>

DOWNLOAD OVER TOR

If you want to download a file anonymously over Tor, just
select a URL, press Ctrl+R and activate the action ’URL
Download (Tor)’.

Of course, make sure Tor is running! The action gives you the
ability to verify that your IP is being anonymized and reports

both your real IP and your anonymized IP before initiating the
download of the data.

Once the data has been downloaded, you can add it to the
current project by making it a root file. Just select the data
in the hex view, right click and select ’Make selection a root
file’.

HUMANIZED HASHES

If want to compare a cryptographic hash with a colleague over

voice, just hover your mouse over the hash in the analysis view
and you will be presented with a humanized hash which is easy
to remember!

CERBERO LABS

If you have any questions, feel free to contact us at: info@cerbero.io

You can follow us on Twitter to be notified about the latest updates!

cerbero.io CERBERO LABS 15

https://blog.cerbero.io/?p=1835
mailto:info@cerbero.io
https://twitter.com/cprofiler
https://cerbero.io

